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ABSTRAK 

Pembulian siber di media sosial, terutamanya di platform seperti Twitter, membawa 

kesan psikologi dan emosi yang mendalam kepada pengguna. Pembulian siber boleh 

diklasifikasikan kepada pelbagai bentuk seperti berbentuk keagamaan, jantina, umur 

dan etnik. Cabaran dalam mengesan pembulian siber termasuk kesukaran dan 

keterikatan konteks bahasa yang kasar, perubahan pantas slang dan istilah baharu, serta 

keseimbangan antara ketepatan dan capaian untuk mengelakkan keputusan positif dan 

negatif palsu. Kajian ini meneliti cabaran mengesan cyberbullying di Twitter, dengan 

memberi fokus kepada kesukaran menganalisis bahasa slang dan tidak formal 

menggunakan teknik Pembelajaran Mesin (ML) sedia ada. Kajian ini menekankan 

keperluan untuk kejuruteraan ciri yang lebih maju dan algoritma yang lebih tepat. 

Kajian ini menilai keberkesanan model Pembelajaran Mesin (ML) seperti Random 

Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM) dan model 

Pembelajaran Mendalam (DL) lanjutan seperti Long Short-Term Memory Networks 

(LSTM), Robustly Optimized BERT Approach (RoBERTa) untuk menilai keupayaan 

model tersebut mengenalpasti kandungan kontekstual dan semantik. Objektif utama 

termasuk menilai kesan kualiti data dan pemilihan fitur terhadap prestasi model dan 

membandingkan potensi model ML dan DL. Kajian ini menggunakan data Twitter, 

yang kemudiannya diproses dengan teliti untuk memastikan input berkualiti tinggi. 

pelbagai teknik kejuruteraan ciri termasuk Term Frequency dan Inverse Document 

Frequency (TF-IDF), Bag Perkataan (BoW), pembenaman perkataan, N-grams, 

pengekodan huruf, dan trik hashing digunakan untuk mengesan ciri-ciri bahasa 

pembulian siber. Keputusan eksperimen menunjukkan model ML mencapai ketepatan 

yang baik, dengan RF mencapai ketepatan 93.26%, (LR) pada 92.79%, dan SVM pada 

92.92%. Walau bagaimanapun, model pembelajaran mendalam jauh mengatasi model 

ML, dengan LSTM mencapai ketepatan 94.26% dan RoBERTa mencapai ketepatan 

tertinggi 94.55%. Penemuan ini menunjukkan peranan penting kualiti fitur dan 

pemilihan model dalam meningkatkan ketepatan pengesanan. Kajian ini menyumbang 

kepada pengesanan pembulian siber dengan menunjukkan prestasi terbaik dari model 

pembelajaran mendalam dan memberikan hala tuju penyelidikan masa hadapan untuk 

membina sistem pengesanan yang lebih baik. 
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ABSTRACT 

Cyberbullying on social media, especially on platforms like Twitter (now called X), 

presents profound psychological and emotional difficulties for users. Cyberbullying can 

be classified into different classes such as religious, gender, age and ethnicity. The 

challenges of detecting cyberbullying include the subtlety and context-dependence of 

abusive language, the rapid evolution of slang and new terms, and the balance between 

precision and recall avoiding false positives and negatives. The research addresses the 

challenges of detecting cyberbullying on Twitter, focusing on the difficulties of 

analysing slang and informal language with current ML techniques. It emphasizes the 

need for advanced feature engineering and more accurate algorithms. The study 

evaluates the effectiveness of Machin Learning (ML) models such as Random Forest 

(RF), Logistic Regression (LR), Support Vector Machine (SVM) and Deep Learning 

(DL) models such as Long Short-Term Memory Networks (LSTM), Robustly 

Optimized BERT Approach (RoBERTa) for their ability to capture contextual and 

semantic content. Key objectives include assessing the impact of preprocess data and 

feature representation selections on model performance and comparing ML and DL 

models. This research uses Twitter data, then pre-processed to ensure high-quality 

input. Multiple features engineering techniques, including Term Frequency and Inverse 

Document Frequency (TF-IDF), Bag of Words (BoW), word embeddings, N-grams, 

character encoding, and the hashing trick, were employed to capture the characteristics 

of cyberbullying language. Experimental results indicate that traditional ML models 

achieve reasonable accuracy, with Random Forest achieving an accuracy of 93.26%, 

Logistic Regression at 92.79%, and SVM at 92.92%. However, deep learning models 

significantly outperform traditional approaches, with LSTM achieving an accuracy of 

94.26% and RoBERTa reaching the highest accuracy of 94.55%. These findings 

highlight the crucial role of feature quality and model development in enhancing 

detection accuracy. The study contributes to cyberbullying detection by showing the 

better performance of deep learning models and provides insights for future research to 

build more robust detection systems. Pus
at 
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CHAPTER I  

 

 

INTRODUCTION 

1.1 Research Background 

The rise of social media has become the main way people connect globally. They have 

evolved into active areas of engagement that people use to express themselves, their 

stories, and valuable information, hence enhancing discussions globally. However, the 

rising major issue of cyberbullying prevails in this harmonious world of digital 

communication where twitter has become an epitome of online communication. One of 

the platform’s basic premises, easy and fast exchanges, thus speeds up the dissemination 

of toxic content, affecting people and collectives profoundly. 

Cyberbullying is a significant challenge for social media users, particularly on 

Twitter. This behavior is characterized by certain acts of aggression, such as racism, 

sexism, ageism, and employing negative attitudes toward people of other beliefs. Multi-

class cyberbullying detection is important because it considers these distinctions in 

order to offer a broad solution that helps in combating online abuse. "Some of the 

studies, such as Chatzakou et al., (2019), have pointed out that the nature of 

cyberbullying is complex, hence the need for effective detection strategies. In addition, 

studies by Silva et al., (2020) and Fitra Rizki et al., (2021) emphasized the chimed, 

psychological that’s of victims, which requires the latest means to identify and deter 

such conduct efficiently. In response to these complex problems, the latest approaches 

based on NLP and ML, as depicted by Mathpati et al., (2024) and Chow et al., (2023), 

are found to be potential solutions. These technologies can comprehend the nature of 

the interactions and the context that is something that cannot be necessarily done by an 

ordinary person, this is why the use of technologies can improve the detection and 

prevention of cyberbullying. The pervasive nature of this issue is evident in many 
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tweets, leading to significant mental and emotional distress among victims, as noted by 

(Chatzakou et al., 2019). The study by Fitra Rizki et al., (2021) has shown that 

cyberbullying on Twitter usually has a bad outcome increased feelings of loneliness, 

unease, despondency, diminished self-worth, and suicide. As a result, it has a lot of 

work to do to stop those activities and calls for the formulation of new approaches for 

content analysis that could discern the subtlety of social interactions at ease (Mathpati 

et al., 2024; Silva et al., 2020). The Chow et al., (2023) study provides a great insight 

into the dangers of cyberspace and highlights the possibility of its broader usage for 

safety onliners. 

Natural Language Processing (NLP) rises as a potent tool against the anarchy of 

online environments. Interestingly, exploring digital reality reveals essential stuff, 

evidenced by the complicated communication making in the virtual zone. Advancing 

from just background processing to current sentiment classification, NLP offers greater 

precision than before in identifying online tumult on social media. Although this 

progress has been steady, interpretation of slang, irony, and sometimes dynamic 

language use is still present alongside the need to determine the intent of the messages 

and the harmful or benign nature of the content. Therefore, the constant improvement 

of NLP will be in need in helping to foster secure online environments (Tariq et al., 

2023). 

This study marks a transition that extends past scholarly circles, suggesting the 

emergence of a widespread social initiative. It explores refined NLP and Machine 

Learning (ML) methodologies, such as Random Forest (RF), Logistic Regression (LR), 

and Support Vector Machine (SVM), with a particular emphasis on their unique ability 

to analyse features that aid in identifying cyberbullying. In addition, the uniqueness of 

each dataset is also the means to the end that is, the performance of different classifiers 

(Muneer et al., 2020). On the contrary, Deep Learning (DL) models or RoBERTa and 

LSTM which possess capabilities like context considerations and semantic nuances 

only scripts require intensively looked explorations to see if their effectiveness will be 

maintained no matter the prevailing scenarios (Tan et al., 2022; Wang et al., 2021).  
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Furthermore, arguably  the ambiguity of the internet is a disputable issue because 

it provides the opportunity for the free exchange of ideas but on the other hand 

contributes to the spread of cyberbullying around the world. It highlights the necessity 

for developing NLP and ML techniques based on the intricacies of online 

communication, it dares to suggest NLP and ML as alternate approaches to digital safety 

enhancement and improvement. To achieve this objective, both traditional and state-of-

the-art techniques of computing is put into place to eliminate cyberbullying hence 

making the internet a safer place. 

1.2 Research Significance 

The multiclass cyberbullying detection on Twitter requires an examination with great 

depth. In time surrounded by a lot of digital cases, securing the platforms is a crucial 

thing to do for the psychic and emotional wellness of a particular user. The work of NLP 

and ML is seen going beyond their current limits here. They are used especially for 

online bullying, where they are made to identify and neutralize cyberbullying, and social 

health is reached through the utilization of technology. 

Accurate classification of different types of cyberbullying is essential for 

implementing targeted interventions, which can help mitigate the various psychological 

impacts on victims. This research aims to improve detection precision, contributing to 

safer online environments. Understanding the nuances of different types of 

cyberbullying is crucial, as this study highlights the importance of differentiating among 

them. Advanced analytical models are necessary to focus on context, sentiment, and 

textual nuances. This approach promotes good netiquette, teaching people how to 

interact respectfully online and creating a space where free expression and safety 

coexist. 

This study shows that NLP, along with ML and DL, are essential for solving 

cyberbullying problems on Twitter. Addressing this issue requires ongoing and effective 

technological innovations to keep virtual spaces safe from harmful activities. Therefore, 

this task extends beyond academia and holds significant importance for society as a 

whole. By exploring the latest methods and technologies, the study aims to create a 

digital world with improved security and greater empathy. 
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1.3 Problem Statement 

The rise of social media platforms like Twitter (now called X) has led to an increase in 

cyberbullying, characterized by the use of slang, informal language, and contextually 

complex interactions. Traditional machine learning (ML) techniques have shown 

limitations in effectively detecting cyberbullying due to these linguistic complexities. 

Studies by Chatzakou et al., (2019) and (Silva et al., 2020) highlight the challenges ML 

models face in understanding the nuanced language of social media texts. Similarly, 

Dinakar et al., (2011) emphasize the need for improved methods to handle these 

complexities and enhance cyberbullying detection accuracy. 

The effectiveness of traditional ML algorithms such as Random Forest, Logistic 

Regression, and Support Vector Machine (SVM) in cyberbullying detection is a critical 

focus. While feature engineering techniques, such as Term Frequency-Inverse 

Document Frequency (TFIDF) and word embeddings, have shown potential to improve 

model performance (Muneer et al., 2020), there remains a need to explore more 

advanced and effective featues. Tariq et al., (2023) suggest that modifications in feature 

engineering significantly impact the performance of classical algorithms, underscoring 

the importance of methodological advancements. 

Advanced deep learning (DL) models, such as RoBERTa and Long Short-Term 

Memory (LSTM) networks, have been posited to outperform traditional ML models by 

capturing the contextual and semantic intricacies in textual data. Studies by Tan et al., 

(2022) and Wang et al., (2021) demonstrate that DL models can achieve higher 

accuracy in cyberbullying detection, particularly with appropriate model tuning and 

data representation techniques. However, the performance of these models is heavily 

dependent on the preprocessing methods and feature extraction algorithms employed. 

Critical factors influencing the performance of cyberbullying detection systems 

include data preprocessing and feature extraction. Mozafari et al., (2019) and Menini et 

al., (2019) highlight the crucial role of preprocessing and feature representation in 

enhancing model accuracy. Their research indicates that decisions made at these initial 

stages can significantly influence the performance of both ML and DL models in 

detecting cyberbullying. 
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In addressing these challenges, this study aims to evaluate the impact of 

traditional ML models (Random Forest, Logistic Regression, SVM) and advanced DL 

models (LSTM, RoBERTa) on cyberbullying detection on Twitter. By investigating 

various feature engineering techniques and preprocessing methods, this research seeks 

to improve the accuracy and robustness of cyberbullying detection systems. 

1.4 Research Questions 

To address challenges stated in the problem statement, this study answer three research 

questions as follows: 

1. RQ1: How effective are traditional ML algorithms (Random Forest, Logistic 

Regression, SVM) in classifying different forms of cyberbullying in text data when 

applying various feature engineering techniques? 

2. RQ2: How does the preprocess data and feature representation selections impact 

the performance of ML and DL models in detecting cyberbullying on social media 

platforms? 

3. RQ3: Can advanced DL models (LSTM, RoBERTa) surpass traditional algorithms 

in understanding text's contextual and semantic intricacies to improve classification 

accuracy? 

Therefore, this study is regarded as a top priority because of the frequent 

mutation of online communication practices, and, of course, the safety of online 

communication becomes very important. The findings generated will expand both the 

academic knowledge, but as well, will make the translations of pieces of knowledge 

into real-life applications, one of the key steps towards effective cyberbullying 

solutions. 

1.5 Objective Of Research 

This research focuses on creating advanced methods for classifying text, evaluating 

traditional machine learning models and exploring the capabilities of state-of-the-art 
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deep learning frameworks for enhanced accuracy and deeper contextual understanding. 

Setting the following objectives will guide the development of a whole new approach. 

1. Evaluate the efficacy of traditional ML algorithms (Random Forest, Logistic 

Regression, SVM) in classifying diverse forms of cyberbullying within text data, 

focusing on the role of innovative feature engineering techniques to enhance model 

accuracy and interpretability. 

2. To assess the impact of pre-processed data and feature representation selections on 

the accuracy and effectiveness of ML models in cyberbullying detection, 

emphasizing the preprocessing techniques and the robustness of feature 

representation to enhance model performance. 

3. To compare and investigate the potential of advanced DL models (LSTM, 

RoBERTa) to surpass traditional algorithms with machine learning algorithms 

based on different feature representations that are used to contextual and semantic 

intricacies of text. 

1.6 Research Scope  

The research is all about multiclass cyberbullying detection on Twitter, and its contexts 

have delimited accordingly. This study uses "Cyberbullying Classification" dataset 

Jason Wang, (2020), which includes cyberbullying classes which are religion, age, 

gender, ethnicity and other violating classes which are other cyberbullying not 

considered as cyberbullying. These models were chosen for their proven efficacy in 

handling complex, multi-class text classification tasks, which is essential for accurately 

identifying various forms of cyberbullying on Twitter. Their ability to capture nuanced 

language patterns across different cyberbullying categories enhances the detection 

precision. This research uses machine learning algorithms and neural networks like 

Random Forest RF, Logistic Regression LR and Support Vector Machine SVM, as well 

as LSTM and RoBERTa models, to discover all possible factors of feature extraction 

and classification. Evaluation metrics like accuracy, precision, recall, and F1-score are 

employed in determining the performance of these models. 
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1.7 Research Methodology 

To effectively address the research objectives and tackle the challenges of detecting 

cyberbullying on Twitter, this study employs a structured five-phase methodology 

framework, illustrated in Figure 1.1. This comprehensive approach is designed to 

thoroughly explore the domain, implement innovative solutions, and rigorously 

evaluate the outcomes. The methodology is divided into the following phases: 

1. Data Collection: In the first of the methodology stages the main goal is collecting 

the data that as semantically rich and as complete as it can be and that would 

represent various forms of cyberbullying. Having a rich resource of Kaggle dataset 

dealing with the identification of patterns in texts connected to cyberbullying 

through the text classification approach, the process of classifying texts in the given 

context will be significant. The research can be methodical and labelled across 

different variances of harassment like religious, gender, age, and ethnicity. It 

reveals what type of cyberbullying are, the different methods people employ to 

cyberbully someone, and the devastating effects of cyberbullying. 

2. Pre-processing: In this phase, during the process of data preparation and cleansing 

data, the pre-processing of data, to be able to adapt to the model’s design. This 

method removes irrelevant elements from the data, such as external interference. 

But it also does address the data void to mend breakdown and has the ability to 

come up with an output that is error free. 

3. Feature Engineering: This phase involves extracting and selecting features from 

the pre-processing phase that are crucial for effective cyberbullying detection. The 

selection of features is based on their relevance to the patterns and indicators of 

cyberbullying behaviours in the dataset. 

4. Model Application: After the set of features is built, this phase applies ML models 

(such as Random Forest, Logistic Regression, and SVM) and after that advanced 

DL models (like LSTM and RoBERTa) to the processed. 
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5. Evaluation: The final phase involves a thorough evaluation of all models to assess 

their effectiveness in detecting various forms of cyberbullying. This includes using 

a set of evaluative metrics to compare the performance of the developed models 

against existing methodologies, highlighting improvements in accuracy, 

adaptability, and overall effectiveness. 

 

Figure 1.1 Phases of Research Design 

Figure 1.1 Illustrates the structured approach from data collection through 

model application to the evaluation phase, highlighting the integration of ML and DL 

techniques in detecting cyberbullying on Twitter. The illustration representation 

provides a clear study’s design, enhancing comprehension of the sequential and 

interconnected nature of the research phases. 

Phase 5: Evaluation  

Evaluation all of models. 

Phase 4: Models Application 

Apply ML, DL models to the processed data. 

Phase 2: Pre-processing 

Clean and prepare data for analysis. 

Phase 1: Data Collection 

Identify and gather tweets relevant to cyberbullying. 

Phase 3: Feature Engineering 

Extract and select features crucial for cyberbullying detection according to model. 
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On these grounds, the research plans to make a significant contribution to 

cyberbullying detection on Twitter. Each stage is vital covering the study process from 

the base understanding of the problem area to providing innovative solutions and their 

critical evaluation. 

1.8 Thesis Organization 

This chapter delineates the structure and organization of the thesis, guiding the reader 

through each subsequent chapter. Each section is designed to build upon the previous 

one, providing a comprehensive exploration of cyberbullying detection using NLP, ML, 

and DL methodologies. The narrative unfolds as follows: 

Chapter 2: Literature Review - This chapter provides an in-depth summary of 

the academic research cyberbullying detection. In addition to this, it explores the 

applications of NLP, machine learning (ML), and deep learning (DL) techniques, in the 

area. It examines previous studies, highlighting key findings, applied methodologies, 

and the development of machine learning for detecting cyberbullying. The literature 

review data-intensive techniques, such as algorithms and feature extraction, and has 

been used to categorize cyberbullying based on its properties. Moreover, it reviews the 

pros and cons of emerging technologies and foresees their application in areas including 

reliability and accuracy of detection, as well as the capability to adapt to changing 

conditions. 

Chapter 3: Methodology - Here in this chapter identifies the comprehensive 

methodology pursued by this study. This forms the initial step where the types of data 

sources to be used and the criteria of inclusion are explored. That is preceded by a 

through participation of the preprocessing techs used to clean the data and make it ready 

for analysis, which comes in place for good results. The chapter describes the feature 

engineering process that is applied in the discovery of the features that best correlate 

with cyberbullying detection. Finally, it covers building model stage during which 

develop both conventional ML algorithms and advanced DL models and tune them for 

the cyberbullying detection task. 
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Chapter 4: Experiments and Results for ML - This chapter concentrates on 

the utilization of common ML techniques, like Random Forest, Logistic Regression, 

and SVM. This section describes the experimental setup, which includes training and 

testing processes, and presents the results achieved with these models. The chapter 

appraises the models by metrics which include accuracy, precision, recall, and F1-score. 

It also studies the influence of different feature engineering methods on model 

performance and explains the meaning of the findings with reference to cyberbullying 

detection. 

Chapter 5: Experiments and Results for DL - This chapter concentrates on 

the utilization of common DL techniques, like LSTM and RoBERTa. This section 

describes the experimental setup, which includes training and testing processes, and 

presents the results achieved with these models. The chapter appraises the models by 

metrics which include accuracy, precision, recall, and F1-score. It also studies the 

influence of different feature engineering methods on model performance and explains 

the meaning of the findings with reference to cyberbullying detection.  

Chapter 6: Conclusion and Future Work - The conclusive chapter represents 

a summary comprehension of all observations, and the insights attained during the 

entire duration of the research. It presents the main findings, interprets them in the 

context of daily life, and evaluates what the study has done regarding the field of 

cyberbullying prevention. The level ends with recommendations for future research 

directions, such as the search for algorithmic improvements, better data collection 

methods and features engineering techniques. Besides this, it shows how this evidence 

could be implemented into practice domain in the form of systems against cyberbullying 

and its prevalence reduction on social networks.
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CHAPTER II  

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides a comprehensive review of the literature related to cyberbullying 

classification using both traditional machine learning and advanced deep learning 

approaches. The structure of this chapter is meticulously designed to cover various 

aspects crucial to understanding and advancing cyberbullying detection methods. 

Section 2.2 introduces the concept of cyberbullying, explaining its definition and impact 

on victims. Section 2.3 delves into NLP techniques that are fundamental for analysing 

textual data in cyberbullying detection. Section 2.4 presents an overview of machine 

learning approaches, detailing different algorithms and their applications in this 

domain. Section 2.5 focuses on deep learning approaches, including transformer 

models, LSTM networks, and the RoBERTa layer, providing insights into their 

architectures and advantages. Section 2.6 reviews related work, comparing studies that 

use the same dataset and those that use different datasets to highlight various 

methodologies and their effectiveness. Finally, Section 2.7 summarizes the key findings 

and sets the stage for the subsequent chapters by synthesizing the critical points 

discussed in the literature. 

2.2 Introduction To Cyberbullying 

2.2.1 Definition And Impact 

Cyberbullying is a form of bullying or harassment using electronic means, typically on 

social-media platforms. It can have severe psychological effects on victims, including 

depression, anxiety, and in extreme cases, suicidal thoughts (Patchin et al., 2010). The 

detection of cyberbullying is crucial for creating a safer online environment. 
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Cyberbullying, as defined by Albikawi, (2023), involves the use of digital technologies 

like social media and mobile devices to harass individuals, manifesting through 

offensive messages, harmful posts, and privacy violations. This prevalent issue, 

particularly among young people, on platforms such as Facebook and Instagram, leads 

to severe psychological effects, including depression and social isolation. 

Dennehy et al., (2020) indicate that girls are more susceptible to cyberbullying 

than boys and experience greater trauma, with adolescents and teenagers being the most 

frequent victims across various countries based on internet usage and social-media 

penetration. 

2.2.2 Challenges In Detection 

Detecting cyberbullying poses several challenges, including the dynamic and informal 

nature of online language, the use of slang, abbreviations, and emojis, and the 

contextual understanding required to identify bullying intent (Dinakar et al., 2012). 

Additionally, the imbalanced nature of datasets, where non-bullying instances far 

outnumber bullying instances, complicates the detection process (Van Hee et al., 2018). 

2.3 Natural Language Processing Techniques In Cyberbullying 

Natural Language Processing (NLP) enables computers to understand and generate 

human language, facilitating communication between humans and machines (Basha et 

al., 2023). This includes functions such as speech recognition, natural language 

understanding and natural language generation as well as machine translation and 

sentiment analysis (Clark et al., 2013).  

NLP plays a crucial role in the detection and prevention of cyberbullying on 

social media platforms; by analysing text data, NLP techniques can identify harmful 

and abusive language that constitutes cyberbullying (Afrifa et al., 2022). This process 

involves pre-processing the text to reduce noise, extracting relevant features, and 

applying machine learning models to classify the data accurately, NLP enables the 

automated detection of offensive terms and patterns associated with cyberbullying, 

facilitating early intervention and helping to mitigate its psychological and emotional 
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impacts on victims (Rahman, 2022). This technology is vital for creating safer online 

environments. 

2.4 Machine Learning Approaches for Cyberbullying Detection 

2.4.1 Feature Extraction Techniques 

The use of social media including Twitter, Facebook, WhatsApp, and Instagram among 

has been on the increase for some past years (Krithika et al., 2020). Many messages are 

exchanged on these platforms, including hidden content and insulting remarks. Data 

used in cyberbullying can come in various formats, like text, images, and videos. Each 

dataset has variables known as features, though some datasets are more complex. These 

features are vital for analysing, predicting, and classifying data. It's clear that the 

features used to train models greatly impact the accuracy of any machine learning 

algorithm; As datasets grow and include more features, predicting based on specific 

features becomes increasingly difficult (Krithika et al., 2020). The quality of a dataset 

can be enhanced by optimizing its characteristics. This is why feature extraction is so 

important—it helps simplify datasets by reducing the number of features. These 

methods play a key role in making machine learning algorithms more efficient at 

detecting cyberbullying (Krithika et al., 2020). 

It is important to note that using text-based features significantly improves the 

performance of classifiers in detecting cyberbullying, compared to using non-text-based 

features like images and network graphs (Goodboy et al., 2015). Different types of data 

offer various features that help predict cyberbullying. These features are generally 

categorized into content features, user features, sentiment features, and network 

features. (Masnizah Mohd, 2018). The methods used to extract features from a dataset 

depend on the type of data involved. For example, basic content features might include 

profanity, negativity, and subtlety as suggested by (Medhat et al., 2014). Negativity and 

profanity are prevalent in most cyberbullying cases (Dinakar et al., 2012). Special 

features can be used to identify specific labels like sexuality, intelligence, and race. As 

mentioned earlier, most cyberbullying is linked to text data, no matter the social media 

platform. This text data often includes negative sentiments, obscenities, and content 

related to race, physical appearance, and religion (Medhat et al., 2014).  
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Textual features help improve the evaluation of cyberbullying content by analysing how 

often improper words, special characters like question marks and exclamation points, 

uppercase words, smileys/emoticons, and parts of speech appear (Medhat et al., 2014). 

A set of indicators was used to identify cyberbullying in YouTube comments (Raisi et 

al., 2016). This means that for any social media site, regardless of the content posted, 

these can be grouped into media sessions, as explained by (Masnizah Mohd, 2018). The 

media session includes features like cyber aggression, profanity, network graphs, 

images, and linguistic elements, as described by (Hosseinmardi et al., 2015). Among 

the sources of data used, including Twitter, YouTube, Facebook, Instagram, 

Formspring, and Ask.fm, the most commonly used feature classification was content-

based features (Masnizah Mohd, 2018). Sentiment-based features are the second most 

frequently used for identifying cyberbullying, whereas network-based features are the 

least utilized (Masnizah Mohd, 2018). 

Feature representation is a fundamental step in NLP that involves converting 

text data into numerical representations that can be used by machine learning 

algorithms. Common techniques include: 

1. TF-IDF: is a method that combines term frequency and inverse document frequency 

to evaluate the importance of a term in a dataset (Cheng et al., 2019). It uses word 

statistics to extract text features and vectorizes the input (Gada et al., 2021). The 

model focuses on common word expressions across all texts (Muneer et al., 2020). 

TF-IDF is a popular method in text detection, creating vectors from n-grams, words, 

and characters. 

a. TF-IDF Word: Represents the TF-IDF scores of words in a matrix. 

b. TF-IDF N-gram: Represents the TF-IDF scores of n-grams—combinations of 

(n) words— in a matrix. 

c. TF-IDF Char: Represents the TF-IDF scores of character-level n-grams in a 

matrix. 

Instead of just counting word occurrences, TF-IDF weighs words by their 

relative frequency to avoid exaggerating common words. It highlights when a word 
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occurs more often in a particular statement than across the entire text corpus. This 

feature is useful for detecting cyberbullying (Muneer et al., 2020). The TF-IDF 

vocabulary is created during model training and then used again for test predictions, 

proving to be an effective method for text classification (Muneer et al., 2020). 

The TF-IDF weight for a term in a document is mathematically represented as 

follows: 

𝑊(𝑑, 𝑡)  =  𝑇𝐹(𝑑, 𝑡)  ∗  𝑙𝑜𝑔 (
𝑁

𝑑𝑓(𝑡)
) (2.1) 

Here, N is the number of documents, df(t) is the number of documents in the 

dataset containing the word t. The term TF(d,t) enhances the recall, whereas the second 

term enhances the word embedding accuracy (Muneer et al., 2020). 

2. Bag of Words: The BoW method has been widely used in the field of text 

classification, feature representation selections, and image recognition. It represents 

texts as a collection of word frequencies, disregarding grammar and word order. The 

method simplifies documents into vectors of word occurrences, creating a histogram 

for each document, represents text as vectors of word frequency, capturing term 

frequency but not context (Qader Wisam A. et al., 2019). 

3. Word Embeddings: Captures semantic relationships between words using models 

like Word2Vec, GloVe, or FastText.  

a. Word2Vec: The Word2Vec model heralds a substantial leap forward in NLP by 

transmuting words into continuous vector representations, thus empowering 

machines to handle text data with enhanced efficacy. Conceived by Mikolov, 

Chen, et al., (2013) the model bifurcates into two principal approaches: 

Continuous Bag of Words (CBOW) and Skip-Gram. CBOW anticipates a target 

word from its surrounding context, while Skip-Gram predicts the context words 

given a target word. These methods employ dense vector representations, 

preserving the intricate semantic and syntactic relationships among words. The 

model's efficiency is further augmented through hierarchical SoftMax and 
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negative sampling, which optimize the computational load by minimizing the 

calculations required for each word's representation (Mikolov, Chen, et al., 

2013). Word2Vec has exhibited its versatility across a myriad of applications, 

encompassing text classification, syntactic and semantic analysis, and analogy 

resolution (Mikolov, Chen, et al., 2013). 

Its capability to maintain contextual integrity and yield meaningful vector 

space mappings positions it as superior to traditional methods such as (BOW) and 

(TF-IDF), often falter in capturing profound semantic nuances. The adaptability and 

robust performance of Word2Vec in managing extensive datasets with agility 

underscore its pivotal role in word embeddings and natural language comprehension 

(Mikolov, Sutskever, et al., 2013). 

b. GloVe: Global Vectors for Word Representation (GloVe) is an unsupervised 

learning algorithm used to derive word embeddings from a text corpus 

(Pennington et al., 2014; Raj et al., 2021). The technique involves constructing 

a co-occurrence matrix, which captures the frequency with which pairs of words 

appear together in a specified context window. This co-occurrence matrix helps 

to analyze the semantic relationships between terms, as words that appear in 

similar contexts tend to have similar meanings. For example, the words "queen" 

and "king" or "mother" and "woman" will have high cosine similarity in their 

vector representations, indicating a close semantic relationship. GloVe learns 

these representations from a large corpus such as Wikipedia and Gigaword 

unsupervised.  

The core of the GloVe model is the objective function, which ensures that the 

dot product of the word vectors reflects the logarithm of the probability of the words 

co-occurring. For a word i with its vector representation wi, the objective function can 

be expressed as: 

𝑓(𝑤𝑖 −  𝑤𝑗, 𝑤𝑘)  =  𝑃𝑖𝑘 / 𝑃𝑗𝑘  (2.2) 

where: 
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• wi  and wj  are the word vectors of words i and j, 

• wk is the context word vector, 

• Pik is the probability of word i co-occurring with context word k, 

• Pjk is the probability of word j co-occurring with context word k,  

GloVe uses the co-occurrence statistics from a large corpus to generate word 

vectors that capture meaningful semantic relationships, enabling various NLP 

tasks to leverage these rich word representations. 

c. FastText: FastText, created by Facebook's AI Research (FAIR) lab, is a 

powerful and efficient tool for text classification and representation. Unlike 

traditional models that rely solely on whole words, FastText uses character n-

grams to capture subword information, enhancing its ability to manage rare and 

out-of-vocabulary words. This results in robust word embeddings and accurate 

text classification even with limited data. Its efficiency makes it ideal for large-

scale datasets and real-time applications, ensuring swift and reliable text 

processing (Joulin et al., 2016). 

FastText is based on a skip-gram model and excels by considering the 

morphology of words, breaking them down into character n-grams. For 

example, the word "language" with n=3 would be divided into n-grams like 'lan', 

'ang', 'ngu', 'gua', and so on. This technique allows FastText to understand the 

context of unknown words by decomposing them into smaller segments and 

matching these with known patterns from its training data (Raj et al., 2021). 

4. N-grams: Considers sequences of 'n' words together to capture context. Recent 

research has highlighted the significance of N-grams, including unigrams, bigrams, 

trigrams, and fourgrams, in NLP tasks. Khadka, (2022) study on predicting Nepali 

words using N-gram models demonstrated that higher-order N-grams, such as 

trigrams and fourgrams, significantly enhance word prediction accuracy. This 

research utilized a Viterbi algorithm for decoding and found that fourgrams achieved 

the highest accuracy compared to bigrams and trigrams, suggesting that longer N-
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gram sequences can capture more contextual information, leading to better predictive 

performance. 

Similarly, Esther Trueman et al., (2022) applied N-grams in combination with 

BERT for sentiment classification of movie reviews. Their study indicated that 

integrating unigrams, bigrams, and trigrams within the BERT model substantially 

improved the classification accuracy. The researchers found that the combination of 

bigrams and trigrams yielded the highest accuracy, outperforming other models that 

utilized only single or lower-order N-grams. These findings underscore the 

effectiveness of using multiple N-gram levels to improve the performance of machine 

learning models in NLP tasks. 

5. Hashing Trick: Converts text into a fixed-size vector using a hashing function.  The 

feature hashing trick, also known as the hashing trick, is a crucial technique for 

converting text data into fixed-size vectors using a hashing function. This method is 

particularly effective for handling high-dimensional text data by reducing its 

dimensionality while preserving the sparsity of the data. In their study, Weinberger 

et al. demonstrated the feasibility of this approach, showing that it not only 

significantly reduces memory usage but also maintains high performance levels in 

multitask learning scenarios (Weinberger et al., 2009). 

6. Character Encoding: Uses sequences of characters instead of words to capture 

more granular information. Character encoding is a fundamental aspect of text 

processing that involves converting characters into a standardized digital format. 

This process allows computers to store and manipulate text efficiently, facilitating 

communication across different systems and platforms. The Unicode Standard, for 

example, provides a comprehensive encoding scheme that supports a vast array of 

characters from various languages and scripts, ensuring consistency and 

compatibility in digital text representation. Understanding character encoding is 

essential for data curators and digital preservationists to manage and preserve textual 

data accurately, as outlined in (Erickson, 2021). 
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Zheng et al., (2019) conducted a comprehensive comparison of various feature 

representation selections methods for text classification, highlighting the importance 

of integrating multiple features to improve classification accuracy and generalization. 

Their study confirmed that combining different types of features can effectively 

mitigate the limitations of individual features, thus enhancing the overall performance 

of text classification models. 

2.4.2 Classification Algorithms 

Machine learning, a field that utilizes algorithms to analyse data and make decisions 

based on learning, encompasses various methods such as Naive Bayes, Support Vector 

Machine (SVM), K-Nearest Neighbour (KNN), and more for tasks like sentiment 

analysis (Tan et al., 2022). Supervised machine learning involves training classifiers 

from labelled samples, as seen in sentiment analysis and sarcasm detection tasks 

(Mohammad et al., 2019; Yazhou Zhang et al., 2023). Lexicon-based approaches in 

sentiment analysis utilize resources like SentiWordNet and statistical methods such as 

PMI and Chi-Square for sentiment word analysis (Torfi et al., 2020). In machine 

translation, traditional methods have evolved into Neural Machine Translation (NMT) 

based on neural networks, eliminating the need for extensive preprocessing and 

focusing on network structure for improved translation accuracy (Chow et al., 2023). 

NLP and Machine Learning are closely intertwined, showcasing the diverse 

applications and advancements within the machine learning domain. 

Machine learning has become essential for detecting cyberbullying on social 

media platforms. Researchers have developed models that effectively identify bullying 

language patterns using features like TF-IDF, Word2Vec, and sentiment analysis by 

utilizing various datasets, including those from Twitter and other social networks. 

Classifiers such as Random Forest, Support Vector Machines, and Neural Networks 

have shown high accuracy and reliability in identifying cyberbullying content, 

demonstrating the potential of machine learning in mitigating online harassment (Alam 

et al., 2021; Alqahtani et al., 2024). 
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1. Random Forest (RF) 

Random forest is a versatile and widely used machine learning algorithm that 

constructs an ensemble of decision trees to achieve more accurate and stable 

predictions. It is applicable for classification and regression tasks, making it a 

valuable tool for various machine learning applications. The bagging method 

combines multiple decision trees, each built from random subsets of features and 

data, to prevent overfitting and enhance performance. This algorithm excels in 

scenarios where interpretability and quick development are essential, offering easy-

to-understand hyperparameters and a straightforward approach to measuring feature 

importance. Despite its slower prediction time when using numerous trees, the 

random forest remains a robust and reliable choice for many predictive modelling 

tasks (Dinakar et al., 2012; Van Hee et al., 2018).  

2. Logistic Regression (LR) 

Logistic regression is a supervised machine learning algorithm primarily used for 

binary classification tasks. It predicts the probability that an instance belongs to a 

particular class by analyzing the relationship between independent variables and the 

dependent binary variable using the sigmoid function, which maps predicted values 

to probabilities between 0 and 1. The logistic regression model fits an "S" shaped 

logistic function rather than a linear regression line, making it particularly suitable 

for classification problems. Depending on the type of dependent variable, logistic 

regression can be classified into binomial, multinomial, or ordinal types. The model's 

coefficients, estimated through maximum likelihood estimation, indicate the 

relationship between the independent variables and the log odds of the dependent 

variable. Despite its simplicity, logistic regression is a powerful tool for 

classification tasks and is valued for its interpretability and quick classification 

capabilities (Zaidi et al., 2023). 
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3. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised machine learning algorithm 

primarily used for text classification and data classification, as highlighted in various 

studies (Muneer et al., 2020) (Wibowo et al., 2018). SVM transforms the original 

feature space into a user-defined, kernel-based higher-dimensional space. A linear 

decision surface is constructed within this space, a linear decision surface is 

constructed, which helps generalize the network (Cortes et al., 1995). Conceptual 

challenges include finding a hyperplane that effectively generalizes data points, 

while technical issues involve computing high-dimensional spaces, such as 

constructing hyperplanes in billion-dimensional spaces for complex datasets (Cortes 

et al., 1995). Optimal hyperplanes, which maximize the margin between two classes, 

address the conceptual issue. The ratio of support vectors to training vectors indicates 

the generalization ability, even in infinite-dimensional spaces, with practical 

examples showing ratios as low as 0.03 (Cortes et al., 1995). To solve technical 

challenges, Cortes et al. proposed a support-vector network that rearranges the 

sequence of operations, allowing for efficient construction of decision surfaces 

(Cortes et al., 1995). SVMs are effective in binary classification, including 

cyberbullying detection on platforms like Twitter (Muneer et al., 2020; Wibowo et 

al., 2018), though they can struggle with large datasets due to language vagueness. 

Features of Support Vector Networks include efficient decision rule construction, 

universal applicability, and control over generalization factors. For non-linear data 

separability, kernels are used, and soft margins help manage classification errors. 

Figure 2.1 illustrates an SVM classifier with two features, highlighting support 

vectors and misclassified samples. SVMs' efficiency in binary classification is well-

documented, though challenges remain as data scales (Muneer et al., 2020; Wibowo 

et al., 2018). 
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Figure 2.1 SVM Classifier (Muneer et al., 2020) 

2.5 Deep Learning Approaches 

2.5.1 Transformer Models 

The Transformer model, introduced by (Vaswani et al., 2017) revolutionized NLP by 

addressing the limitations of traditional sequence-to-sequence models such as RNNs 

and LSTMs. Unlike these predecessors, the Transformer relies entirely on self-attention 

mechanisms, enabling it to process sequences in parallel rather than sequentially. This 

architectural shift significantly reduces training times and enhances performance on 

tasks involving long-range dependencies, making it a cornerstone in developing 

advanced language models like BERT and GPT. Rahali et al., (2023) provides an in-

depth overview of various Transformer architectures, their training methods, and their 

advantages over traditional models in handling long-range dependencies and parallel 

processing. 

2.5.2 Long Short-term Memory (LSTM) 

LSTM, a specialized recurrent neural network (RNN) architecture, is designed to handle 

long-range dependencies (Stamp, 2020). As depicted in Figure 2.2 (Stamp, 2020), each 

state in the LSTM architecture has two lines entering and exiting: one represents the 

hidden state, while the other functions as a gradient during backpropagation. The key 

distinction between LSTM and a standard RNN is that LSTM includes feedback 

connections, providing two transmission states (Hochreiter et al., 1997). 
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Figure 2.2 Example:  LSTM (Stamp, 2020) 

Figure 2.2 illustrates a LSTM network, a type of recurrent neural network 

(RNN) used in deep learning to address long-term dependencies and the vanishing 

gradient problem. It includes input nodes (Xt) for each time step, LSTM cells (Lt) that 

process inputs and maintain memory, and hidden states (ht) that serve as both outputs 

and inputs for subsequent steps. Green arrows indicate input flow into the cells, while 

blue arrows show hidden state transitions. LSTM cells have internal gates (input, 

forget, and output) that regulate data flow and enable the network to effectively learn 

long-term dependencies. 

The LSTM architecture comprises cells, gates, and information flow. As 

illustrated in Figure 2.3 (Stamp, 2020), each cell in the LSTM structure includes an 

input gate, forget gate, output gate, and intermediate gate. Additionally, it employs 

sigmoid and hyperbolic tangent functions to compute gate vectors and serve as 

activation functions. The cells analyze dependencies among elements in the input 

sequence, while the gates regulate the flow of information into and out of the cell. 

During training, the weights of the connections between cells are calculated. 

 

Figure 2.3 Example: One timestamp of an LSTM (Stamp, 2020) 
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Figure 2.3 depicts the internal workings of an LSTM cell at a single time step, 

showcasing how it processes inputs and manages its state through various gates. The 

cell receives the current input Xt and the previous hidden state ht−1, and it retains 

information from the previous cell state ct−1. The forget gate ft determines what to 

discard from ct−1, the input gate it decides what new information to add, and the output 

gate ot selects the part of the cell state ct to output as the new hidden state ht. The 

weights for each gate (Wf,Wi,Wc,Wo,Wf) are learned during training, enabling the 

LSTM to effectively update its cell state and capture temporal dependencies in 

sequential data. 

LSTM, a highly successful learning model, adeptly handles both individual 

data points and entire data series. It has been employed in diverse domains to address 

various research challenges, such as classification and prediction problems. LSTM's 

applications span areas like sentiment analysis, speech recognition, and handwriting 

recognition (Hochreiter et al., 1997). Moreover, it is integral to popular products like 

Google Translate, Apple's Siri, and Amazon Alexa (Stamp, 2020). 

2.5.3 Roberta Layer 

RoBERTa, present Liu et al., (2019) is an advanced version of the BERT (Bidirectional 

Encoder Representations from Transformers) model developed by Facebook AI.  

It aims to address several limitations identified in the original BERT model by 

substantially improving pretraining methods. RoBERTa enhances BERT by training the 

model for longer durations, using larger batches of data, and on more extensive datasets. 

It removes the next sentence prediction objective and dynamically changes the masking 

patterns applied to the training data. These modifications result in significant 

performance improvements on various natural language understanding tasks. RoBERTa 

sets new state-of-the-art results on benchmarks like GLUE, RACE, and SQuAD, 

demonstrating its robustness and efficacy in handling complex language tasks. 

RoBERTa endeavors to learn a universal language representation by pre-

training on extensive unlabeled text data, subsequently fine-tuning for various 

downstream NLP tasks (Xu et al., 2023). Figure 2.4 illustrates the architecture of the 

RoBERTa model. 
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Figure 2.4 Schematic diagram of the structure of the RoBERTa (Xu et al., 2023) 

Figure 2.4 depicts the architecture of a Transformer model, illustrating how it 

converts input characters into a semantic representation. The input sequence, including 

special tokens CLS and SEP, is fed into the Transformer, which consists of multiple 

modules (Tm). These modules use self-attention mechanisms and feed-forward 

networks to process the sequence, capturing relationships and dependencies between 

tokens. The output is a semantic representation, a vector or set of vectors that 

encapsulate the meaning of the input, useful for tasks like classification, translation, or 

summarization. The Transformer's strength lies in its ability to manage long-range 

dependencies and parallel processing, making it ideal for various NLP tasks. 

2.6 Related Work 

Several studies have compared different ML and DL approaches for the same dataset 

cyberbullying detection: 

In recent years, detecting cyberbullying on social media has garnered 

significant attention from researchers, resulting in various approaches leveraging 

machine learning (ML) and deep learning (DL) techniques. This section discusses the 

contributions of four key studies that have advanced the field of cyberbullying 

detection through different methodologies and models. 

Jason Wang, (2020) introduced the "Cyberbullying Classification" dataset on 

Kaggle, which analyzes cyberbullying trends across various social media platforms. 

During the COVID-19 pandemic. 
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2.6.1 Related Work On The Same Dataset 

Jason Wang, (2020) present a robust framework for the detection and classification of 

cyberbullying on Twitter. The authors address the issue of class imbalance by 

employing a modified Dynamic Query Expansion (DQE) process to augment six 

existing Twitter cyberbullying datasets, resulting in a balanced dataset of 48,000 tweets 

categorized into Not Cyberbullying, Age, Ethnicity, Gender, Religion, and Other. Their 

methodology involves constructing a textual graph based on cosine similarities between 

tweet embeddings and leveraging a Graph Convolutional Network (GCN) classifier 

named SOSNet. Various embedding methods were tested, including BOW, TF-IDF, 

word2vec, GloVe, FastText, BERT, DistilBERT, and SBERT, alongside classifiers 

such as Logistic Regression, Naïve Bayes, KNN, SVM, XGBoost, MLP, and SOSNet. 

Notably, the combination of BOW with XGBoost achieved the highest accuracy and F1 

score for the full dataset (Accuracy: 94.38%, F1 Score: 94.44%), while SBERT with 

SOSNet produced the best results on a downsized dataset of 4,000 tweets (Accuracy: 

92.70%, F1 Score: 92.58%). The study demonstrates the efficacy of simple embedding 

methods with robust classifiers, as well as the potential of advanced embeddings and 

graph-based learning for cyberbullying detection. 

In Mathur et al., (2023) the best results were achieved using the Random Forest 

classifier with 50 estimators and the Gini Index for information gain, combined with 

Count-Vectorizer and TF-IDF during preprocessing. The image captioning model was 

utilized to create descriptions for images posted on the account, which were then 

compared with user-written captions to identify and filter out spam tweets. This 

configuration yielded the highest accuracy of 94.06%, precision of 94.01%, and recall 

of 94.24%, outperforming other classifiers such as AdaBoost and Gradient Boosting. 

These results highlight the effectiveness of the Random Forest model, especially when 

fine-tuned with appropriate hyperparameters and preprocessing techniques. 

In Alqahtani et al., (2024) the best results were achieved using ensemble 

methods combining Random Forest (RF), Decision Tree (DT), and XGBoost classifiers. 

The Stacking Classifier, which integrates these models, achieved the highest accuracy 

of 90.71%, with a precision of 90.85%, recall of 90.60%, and an F1 score of 90.63%. 
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The Voting Classifier also performed well, with an accuracy of 90.41%, precision of 

90.69%, recall of 90.36%, and an F1 score of 90.45%. These results highlight the 

effectiveness of ensemble methods over traditional single classifiers in detecting 

cyberbullying on Twitter, especially when using TF-IDF with bigrams for feature 

extraction. 

In Mahmud et al., (2022) the best results were achieved using the LightGBM 

classifier, outperforming other models such as XGBoost, Logistic Regression, Random 

Forest, and AdaBoost. LightGBM achieved the highest performance metrics with an 

accuracy of 85.5%, precision of 84.0%, recall of 85.0%, and an F1 score of 84.49%. 

The dataset used consisted of approximately 47,692 tweets categorized into six classes: 

age, gender, religion, ethnicity, other types of cyberbullying, and not cyberbullying. 

The study highlighted the effectiveness of LightGBM in detecting cyberbullying tweets, 

especially with text-based feature extraction using TF-IDF. 

In Singh et al., (2022) the best results were achieved using the Gated Recurrent 

Unit (GRU) model, which outperformed other models such as Naive Bayes, Logistic 

Regression, SVM, Random Forest, XGBoost, and LSTM. The GRU model achieved 

the highest performance metrics with an accuracy of 92%, precision of 92%, recall of 

92%, and an F1 score of 92%. The dataset used consisted of approximately 47,694 

tweets categorized into six classes: age, gender, religion, ethnicity, other types of 

cyberbullying, and not cyberbullying. This study highlights the effectiveness of deep 

learning models, particularly GRU, in accurately detecting various forms of 

cyberbullying on social media platforms. 

The feature representation selection process is a critical component of this study, 

ensuring that the models are provided with the most informative and relevant data. 

Features such as TF-IDF and word embeddings were chosen for their proven 

effectiveness in previous research. As outlined in Table 2.1, these features have 

consistently demonstrated their ability to enhance text classification tasks by capturing 

both frequency-based and semantic information. The use of these features is particularly 

relevant for the informal and slang-heavy language of tweets, as they can capture the 

nuances and context-dependent variations necessary for accurate cyberbullying 
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detection. Empirical support from studies like Chatzakou et al., (2019) and Silva et al., 

(2020) further validates this choice, ensuring a robust and reliable foundation for this 

research. 

Table 2.1 Analysis Same Dataset of Cyberbullying Detection Models 

Author/ Year Dataset Features Model/ Classifier Results 

(Jason Wang, 

2020) 

Twitter/ 

4,000 

tweets 

(10% of 

the total 

dataset was 

utilized by 

this the 

study) 

BOW,  

TF-IDF 

Textual 

Features, 

Semantic 

Similarity, 

Tweet 

Embeddings 

Graph Convolutional 

Network (GCN), 

BOW+XGBoost, TF-

IDF+XGBoost, 

SBERT+SOSNet 

Accuracy:  

94.38% (BOW+XGBoost), 

92.70% (SBERT+SOSNet); F1-

Score:  

94.44% (BOW+XGBoost), 

92.58% (SBERT+SOSNet) 

(Singh et al., 

2022) 

Twitter/ 

47,694 

tweets 

Word 

Embeddings 

Naive Bayes, Logistic 

Regression, SVM, 

Random Forest, 

XGBoost, LSTM, 

GRU 

Accuracy: (GRU) 92%; Precision: 

92%; Recall: 92%; F1-Score: 

92% 

(Mahmud et 

al., 2022) 

Twitter/ 

47,692 

tweets 

TF-IDF LightGBM, XGBoost, 

Logistic Regression, 

Random Forest, 

AdaBoost 

Accuracy: (LightGBM) 85.5%, 

(XGBoost) 83.5%, (LR) 82.3%, 

(RF) 83.1%, (AdaBoost) 81.0%; 

Precision: (LightGBM) 84.0%, 

(XGBoost) 82.5%, (LR) 82.0%, 

(RF) 82.0%, (AdaBoost) 80.5%; 

Recall: (LightGBM) 85.0%, 

(XGBoost) 83.0%, (LR) 82.5%, 

(RF) 83.5%, (AdaBoost) 81.0%; 

F1-Score: (LightGBM) 84.49%, 

(XGBoost) 82.74%, (LR) 82.24%, 

(RF) 82.74%, (AdaBoost) 80.74% 

(Mathur et al., 

2023) 

Twitter/ 

47,000 

tweets 

(Real-Time 

Tweet 

Analyzing) 

Count-

Vectorizer, 

TF-IDF 

Random Forest Accuracy: 94.06%; Precision: 

94.01%; Recall: 94.24%; F1-

Score: 94.24% 

(Alqahtani et 

al., 2024) 

Twitter/ 

47,000 

tweets 

TF-IDF 

with 

bigrams 

Random Forest, 

Decision Tree, 

XGBoost 

Accuracy: (Stacking) 90.71%, 

(Voting) 90.41%; Precision: 

(Stacking) 90.85%, (Voting) 

90.69%; Recall: (Stacking) 

90.60%, (Voting) 90.36%; F1-

Score: (Stacking) 90.63%, 

(Voting) 90.45% 

Table 2.1 provides an overview of various studies on cyberbullying detection 

using machine learning techniques. Each study utilized same datasets, feature extraction 

methods, and classifiers to achieve varying levels of accuracy and performance. 
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2.6.2 Related Work On Different Dataset 

In Rohini et al., (2023) the dataset includes 10,000 comments from Kaggle and 20,000 

comments from various social media platforms. The features used are (BoW), 

Frequency (TF-IDF), and Word2Vec. The study employed Logistic Regression, 

Random Forest, Support Vector Machine, Naive Bayes, Decision Tree, and XGBoost 

classifiers, with Random Forest achieving the best results (Accuracy: 99.39%, F1-

Score: 99.61%). 

Kumar et al., (2022) used datasets from various social media platforms, 

including Twitter and Facebook. The features included BoW, TF-IDF, Word2Vec, and 

N-gram. The classifiers used were Naive Bayes, Support Vector Machine, Logistic 

Regression, Decision Tree, Random Forest, and K-nearest neighbour, with Random 

Forest performing the best (Accuracy: 91.153%, F-Measure: 0.898). 

In Payal Budhe et al., (2023) the dataset comprised Twitter and other social 

media networks. The features included BoW, Skip Gram, Profanity Features, Sentiment 

Features, Pronouns, Demographic Features, Friends and Followers Count, Timestamp, 

and Location. The classifiers used were SVM, J48, Naive Bayes, Random Forest, and 

Social Signed Networks, with SVM achieving the best results (Accuracy: 89.75%, F1-

Score: 0.886). 

Islam et al., (2023) utilized 8,455 comments from WhatsApp, Facebook, 

Instagram, TikTok, and YouTube. The features used were TF-IDF and Word 

Embeddings. The classifiers included Logistic Regression, Decision Trees, Random 

Forest, Multinomial Naive Bayes, KNeighbors Classifier, Support Vector Machines, 

and Stochastic Gradient Descent, with SVM achieving the best performance (Accuracy: 

90.06%, Precision: 92.60%, Recall: 84.16%, F1-Score: 88.18%). 

In Alam et al., (2021) the dataset consisted of 9,093 tweets from Twitter. The 

features used were BoW, TF-IDF, and N-gram. The classifiers included Multinomial 

Naive Bayes, Logistic Regression, Decision Tree, Linear Support Vector Classifier, and 

ensemble methods such as Gradient Boosting, AdaBoost, Bagging, Voting Classifier, 

and Stacking Classifier, with the Stacking Classifier achieving the best results 

(Accuracy: 96%, Precision: 96.5%, Recall: 96.5%, F1-Score: 96.5%). 
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Afrifa et al., (2022) utilized a dataset of 16,851 tweets from Twitter. The feature 

extraction method used was TF-IDF. The classifiers employed were Random Forest and 

Support Vector Machine, with Random Forest achieving the highest accuracy (98.5%, 

RMSE: 0.2588, MSE: 0.0670). 

Talpur et al., (2020) used 24,189 tweets from Twitter. The features included 

BoW, POS Tagging, and PMI-Semantic Orientation. The classifiers were Naive Bayes, 

K-Nearest Neighbors, Decision Tree, Random Forest, and Support Vector Machine, 

with Random Forest performing the best (Accuracy: 91.153%, F-Measure: 0.898). 

Jain et al., (2021) employed datasets from Twitter and Wikipedia. The features 

used were BoW, TF-IDF, and Word2Vec. The classifiers included SVM, Logistic 

Regression, Random Forest, and Multi-Layer Perceptron, with SVM and TF-IDF 

achieving the best results (F-Measure: 0.939 for Twitter), and Neural Network 

achieving 92.8% accuracy for Wikipedia. 

Apoorva et al., (2022) utilized a large dataset from Mendeley and found that the 

Gated Recurrent Unit (GRU) was the top performer, achieving an accuracy of 95.47%, 

precision of 0.90, recall of 0.89, and an F1-score of 0.89. "Machine Learning Based 

Approach for Detection of Cyberbullying Tweets" used datasets from Twitter and 

Kaggle, with Logistic Regression achieving the best results (accuracy: 93%, F1-score: 

93%). 

Shah et al., (2020) used Twitter and Kaggle datasets. The features used were 

TF-IDF. The classifiers included Logistic Regression, Support Vector Machine, 

Random Forest, Multinomial Naive Bayes, and Stochastic Gradient Descent, with 

Logistic Regression achieving the best performance (Accuracy: 93%, F1-Score: 93%). 

Hani et al., (2019) utilized a dataset of 12,773 conversations/messages from 

Formspring (Kaggle). The features used were TF-IDF, Sentiment Analysis, and N-

Gram. The classifiers employed were SVM and Neural Network, with the Neural 

Network outperforming others (Accuracy: 92.8%, F-Score: 91.9%). 
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Table 2.2 Analysis Different Dataset of Cyberbullying Detection Models 

Author/ Year Dataset Features Model/ Classifier Results 

(Rohini et al., 

2023) 

10,000 

comments 

(Kaggle), 

20,000 

comments 

(social media 

and Kaggle) 

BoW, TF-IDF, 

Word2Vec 

Logistic Regression, 

Random Forest, 

Support Vector 

Machine, Naive Bayes, 

Decision Tree, 

XGBoost 

Random Forest 

(Accuracy: 

99.39%, F1-

Score: 99.61%) 

(Kumar et al., 

2022) 

Various social 

media 

platforms, 

including 

Twitter and 

Facebook 

BoW, TF-IDF, 

Word2Vec, N-gram 

Naive Bayes, Support 

Vector Machine, 

Logistic Regression, 

Decision Tree, Random 

Forest, K-nearest 

neighbor 

Random Forest 

(Accuracy: 

91.153%, F-

Measure: 0.898) 

(Afrifa et al., 

2022) 

16,851 tweets 

from Twitter 

TF-IDF Random Forest, 

Support Vector 

Machine 

Random Forest 

(Accuracy: 

98.5%, RMSE: 

0.2588, MSE: 

0.0670) 

(Payal Budhe 

et al., 2023) 

Twitter and 

other social 

media networks 

BoW, Skip Gram, 

Profanity Features, 

Sentiment Features, 

Pronouns, 

Demographic 

Features, Friends 

and Followers 

Count, Timestamp, 

Location 

SVM, J48, Naive 

Bayes, Random Forest, 

Social Signed Networks 

SVM 

(Accuracy: 

89.75%, F1-

Score: 0.886) 

(Islam et al., 

2023) 

8,455 comments 

from 

WhatsApp, 

Facebook, 

Instagram, 

TikTok, and 

YouTube 

TF-IDF, Word 

Embeddings 

Logistic Regression, 

Decision Trees, 

Random Forest, 

Multinomial Naive 

Bayes, KNeighbors 

Classifier, Support 

Vector Machines, 

Stochastic Gradient 

Descent 

SVM 

(Accuracy: 

90.06%, 

Precision: 

92.60%, Recall: 

84.16%, F1-

Score: 88.18%) 

(Alam et al., 

2021) 

9,093 tweets 

from Twitter 

BoW, TF-IDF, N-

gram 

Multinomial Naive 

Bayes, Logistic 

Regression, Decision 

Tree, Linear Support 

Vector Classifier, 

Ensemble methods: 

Gradient Boosting, 

AdaBoost, Bagging, 

Voting Classifier, 

Stacking Classifier 

Stacking 

Classifier 

(Accuracy: 

96%, Precision: 

96.5%, Recall: 

96.5%, F1-

Score: 96.5%) 

(Talpur et al., 

2020) 

24,189 tweets 

from Twitter 

BoW, POS 

Tagging, PMI-

Semantic 

Orientation 

Naive Bayes, K-Nearest 

Neighbors, Decision 

Tree, Random Forest, 

Support Vector 

Machine 

Random Forest 

(Accuracy: 

91.153%, F-

Measure: 0.898) 

To be Continue … 
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(Jain et al., 

2021) 

Twitter and 

Wikipedia 

datasets 

BoW, TF-IDF, 

Word2Vec 

SVM, Logistic 

Regression, Random 

Forest, Multi-Layer 

Perceptron 

SVM with TF-

IDF (F-

Measure: 0.939 

for Twitter), 

Neural Network 

(Accuracy: 

92.8% for 

Wikipedia) 

(Apoorva et 

al., 2022) 

159,686 

comments from 

Mendeley 

Count Vectorizer, 

Word Embedding 

K-Nearest Neighbor, 

Multinomial Naive 

Bayes, Logistic 

Regression, Support 

Vector Machine, 

LSTM, Gated 

Recurrent Unit 

Gated 

Recurrent Unit 

(Accuracy: 

95.47%, 

Precision: 0.90, 

Recall: 0.89, 

F1-Score: 0.89) 

(Shah et al., 

2020) 

Twitter and 

Kaggle datasets 

TF-IDF Logistic Regression, 

Support Vector 

Machine, Random 

Forest, Multinomial 

Naive Bayes, Stochastic 

Gradient Descent 

Logistic 

Regression 

(Accuracy: 

93%, F1-Score: 

93%) 

(Hani et al., 

2019) 

12,773 

conversations/m

essages from 

Formspring 

(Kaggle) 

TF-IDF, Sentiment 

Analysis, N-Gram 

SVM, Neural Network Neural Network 

(Accuracy: 

92.8%, F-Score: 

91.9%) 

 

Table 2.2 comprehensively analyzes various studies on cyberbullying detection 

using machine learning techniques. Each study utilized different datasets, feature 

extraction methods, and classifiers to achieve varying levels of accuracy and 

performance. 

 

These studies collectively highlight advancements in cyberbullying detection, 

sophisticated machine learning and deep learning techniques. By employing diverse 

methodologies, ranging from feature-based text classification to ensemble and deep 

learning models, these works contribute significantly to enhancing the accuracy and 

robustness of automated cyberbullying detection systems. The integration of innovative 

approaches, such as attention mechanisms and graph-based models, further underscores 

the potential of these technologies in addressing the evolving nature of cyberbullying 

on social media platforms. 

… Continued 
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2.7 Summary 

This chapter provides a comprehensive overview of the current state of cyberbullying 

detection, highlighting its definition, impact, and the challenges involved. The literature 

review delves into the complexities of detecting cyberbullying, emphasizing the role of 

NLP and machine learning techniques. It explores various feature extraction methods 

such as TF-IDF, Word2Vec, and GloVe, etc., alongside advanced machine learning 

classifiers including Random Forest, Logistic Regression, and Support Vector Machine. 

Additionally, it reviews the application of deep learning models like LSTM and 

RoBERTa. Comparative studies using different datasets underscore the effectiveness of 

various methodologies in improving detection accuracy. The integration of these 

sophisticated techniques showcases the ongoing advancements and the critical role of 

technology in mitigating the psychological impacts of cyberbullying, thereby 

contributing to creating safer online environments.
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CHAPTER III 

 

 

METHODOLOGY 

3.1 Introduction 

The elaborate strategy implemented in curbing cyberbullying detection through 

standard machine learning and advanced deep learning methods has been articulated in 

this chapter. The methodology is structured into distinct phases, each critical to the 

development of an effective cyberbullying detection application. Section 3.2 starts with 

the research design. It, therefore, has a complete survey about the steps followed, 

starting from the data collection to the model evaluation. Section 3.3 presents the dataset 

used in this study and provides insights on the diversity of the dataset. Section 3.4 

describes techniques for normalizing data and preprocessing, which are crucial for the 

strategic preparation of the dataset. Section 3.5 discusses the feature engineering 

techniques to bolster the model performance through efficient representation of the 

textual data. Section 3.6 provides comprehensive discussion to tackle the application of 

both machine learning and deep learning models in classification. Section 3.7 discuss 

the evaluation metrics used during the research, which is centred around the objective 

of identifying and categorizing cyberbullying occurrences on online platforms.  

3.2 Research Design 

The research design encapsulates a structured approach across five primary phases, each 

crucial for developing an effective cyberbullying detection system. The workflow 

begins with data collection, followed by data normalization, feature engineering, model 

application, and concludes with a thorough evaluation of the models' performance. This 

design is structured to meet the study’s objectives by applying both traditional machine 

learning and advanced deep learning models to a dataset of cyberbullying instances on 

Twitter. As shown below. 
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The first phase of the iterative design process encompasses the compilation of a broad 

dataset, which should include tweets with different orientations and show the dynamic 

nature of Twitter communication. The next is, in phase two, to thoroughly prepare the 

processed data for use in further research studies. Throughout the third phase, advanced 

feature engineering techniques such as TF-IDF, word embeddings, n-grams, BOW, 

Character Encoding, and Hashing Vectorization are employed in order to filter out the 

relevant features for the given text data to be extracted. The fourth phase is of utmost 

importance, where there is a choice of models that range from classics such as RF, LR, 

and SVM to advanced models, namely LSTM and RoBERTa to be trained. The 

culmination of this process happens in the fifth phase if the efficiency of models is 

compared against key performance indicators such as accuracy, precision, recall, and 

the F1 measure to determine their ability to correctly identify cyberbullying in various 

forms. Each of these phases is critical, serving as a building block in the complex 

structure of this research design, which is illustrated as follows: 

1. Phase 1 (Cyberbullying Tweets Dataset): This initial phase includes collection, 

representation and description of the dataset that will deal with research questions, 

namely, how data diversity is ensured in machine and deep learning for Twitter 

analysis. 

2. Phase 2 (Data Normalization): Preparation of the dataset through various 

normalization techniques, with the data standardization and reduction of noises 

proceeds aiming to make the data suitable for further analysis and processing. 

3. Phase 3 (Feature Engineering): This phase involves the identification and 

extraction of selection of textual features such as TF-IDF, word embedding, n-

grams, hashing vectorization and character encoding. 

4. Phase 4 (Models Application): In this step, there can be a diverse number of 

models, such as RF, LR and SVM, and they can be more advanced like LSTM and 

RoBERTa. 
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5. Phase 5 (Evaluation): The last phase is assessment of models using several metrics 

to determine their effectiveness, it is taking in the comparison of performance of 

traditional machine learning algorithms and advanced deep learning approaches, 

where it shed lights on the appropriateness in real-world scenarios. 

 

Figure 3.1 Phases of Research Methodology 

Figure 3.1 visually summarizes these phases, illustrating the comprehensive 

approach adopted in this study. 

3.3 Cyberbullying Tweets Dataset 

Jason Wang, (2020) presented a dataset that is under examination and available on 

Kaggle entitled "Cyberbullying Classification". It comprises textual data collected to 
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scrutinize cyberbullying trends across diverse social media platforms, with entries 

categorized into multiple forms of cyberbullying or non-cyberbullying activities. 

Highlighted during the COVID-19 pandemic —specifically noted by UNICEF on April 

15, 2020—this dataset gains prominence due to the rise in cyberbullying incidents 

correlating with increased digital engagement and reduced in-person interactions. These 

figures are scary, as 36.5% of middle and high school students have felt cyberbullied, 

and 87% have observed cyberbullying. The consequences of these actions are far-

reaching, resulting in decreased academic performance and mental health conditions, 

including depression and suicidal thoughts. The Cyberbullying Tweets Dataset is highly 

relevant for research due to its compilation during the COVID-19 pandemic, 

characterized by heightened online activity and an increase in cyberbullying 

(Cyberbullying Classification, n.d.). The dataset's wide annotations of the different 

types of cyberbullying, like religion, age, gender, and ethnicity, make it possible to 

create algorithms that can detect the specific types of cyberbullying and thus solve the 

problem. Besides, its representation of every class equally is the barrier to the biased 

machine learning models towards the most common categories. Thus, the algorithms 

will work equally on all types of cyberbullying.  

Table 3.1 shows some examples of different categories of cyberbullying. Corpus 

is drawn from around 47,692 tweets distributed into six classes, which were properly 

assigned with corresponding labels based on the nature of the content they represent.  

Table 3.1 Cyberbullying Examples 

Label Example Tweet Content Category Description 

Religion "Your religious beliefs are so backward 

#ignorant" 

Cyberbullying based on religion 

Age "Wow, you act like such a kid. Grow up! 

#immature" 

Cyberbullying targeting age 

Gender "He thinks he's tough, but acts like a girl 

#weak" 

Cyberbullying related to gender 

Ethnicity "I bet you can't even speak proper English 

#stereotype" 

Cyberbullying targeting 

ethnicity 

Not_cyberbullying "Just enjoyed a great day at the beach with 

friends #happy" 

Non-cyberbullying content 

Other_cyberbullying "You're so ugly you should be banned 

from posting pics #mean" 

Other forms of cyberbullying 
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Table 3.2 shows the distribution of classes within the dataset. It indeed presents 

an even spread of cyberbullying groups. The structure of the cyberbullying dataset is as 

follows: Text: This column contains the tweet text. Label: This column categorizes each 

tweet, indicating whether it is considered cyberbullying or not. 

 

Table 3.2 Class Distribution Analysis 

Label Count Percentage of Total 

Religion 7,998 16.8% 

Age 7,992 16.8% 

Gender 7,973 16.7% 

Ethnicity 7,961 16.7% 

Not_cyberbullying 7,945 16.6% 

Other_cyberbullying 7,823 16.4% 

Total 47,692 100% 

 

Figure 3.2 Snippet of the dataset displays the type of cyberbullying [Religious, 

Gender, Age, Ethnicity, Not Cyberbullying, and Other Cyberbullying].  

 

Figure 3.2 Snippet of the Cyberbullying Dataset 

To ensure a comprehensive understanding of the Cyberbullying Dataset, Figure 

3.3 presents a visualization generated to illustrate the distribution of labels. 
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Figure 3.3 Distribution of labels 

This dataset is an essential part of the study since it underlies the creation and 

advanced assessment of the models needed in the fight against cyberbullying on social 

media platforms. 

3.4 Data Normalization 

Normalizing data in text analysis, especially for social network tracking, is vital for 

establishing the pattern recognition and classification process by ML and DL due to the 

direct effect of inaccuracies in the text on the result of model training. To ensure that 

the model identifies cyberbullying effectively, the implements normalization steps such 

as emoji removal, entity stripping, hashtag cleaning, contraction expansion, and non-

English filtering are implemented to cleanse the data textually. The main goal of these 

normalization processes is to sustain the quality and relevance of the dataset which 

ultimately forms the basis of proficient model training and, which, in turn, leads to the 

effectiveness of cyberbullying detection systems. Subsequent subsections provide a 

more detailed exploration of these tasks. 
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3.4.1 Basic Text Cleaning 

Basic text cleaning is the foundational step in data preprocessing, where text data 

undergoes essential standardization and purification processes. These actions are 

designed to significantly improve the quality and effectiveness of subsequent data 

analyses. By ensuring that the text is clean and uniformly formatted, this step helps pave 

the way for more accurate and insightful analytical results. 

a. Emoji Removal 

Emoji removal, a technique for isolating and discarding emojis from text datasets, 

aims to purify the analytical focus on textual communications, excluding graphic 

interferences. 

b. Stopword Elimination (Stopword removal) 

Stopword Elimination, these common words that are believed to unimportant for 

the analysis are taken out of the text data. Such as stopwords are often characterize 

by articles, conjunctions, prepositions, and pronouns, for example 'the', 'and', 'a', 'of' 

and 'in'. The reason for this stopwords is to cut the dataset size down and emphasize 

meaningful words that probably have more effect in the requested activity.  

c. Entity Stripping 

Entity stripping stands for deleting the major details like names, locations and dates 

from the textual data; this is one of the essential steps in handling data. These actions 

are designed mainly for the purpose of protecting privacy as well as improving data 

analysis with the aid of more generalized content. The specific personal data and 

location specific information are removed, thanks to this method, and as a result the 

core of the text is preserved, and the story is told accurately at the same time. 

d. URL Shortener Removal 

Clarity and security of online interactions derive from the eradication of URL 

shorteners. Because such an operation provides the ability to detect and correct 
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shortened URLs to complete ones, it is very important from the perspective of data 

representation standardization. Primarily, it beefs up security features, specifically, 

thwarting phishing scams, hence, every hyperlink of this email marketing message 

is updated and readable. 

e. Whitespace Normalization 

Whitespace normalization, an essential part of text formatting, is the way to 

manually set up space with a certain distance between words and characters in order 

to improve its readability and look. Cutting unnecessary spaces, tabs, and line 

breaks, and normalizing the spacing between the words and sentences were robust 

actions that unified the appearance of the text across all the domains of the document 

or dataset. 

3.4.2 Text Standardization 

Text standardization normalizes dissimilar textual data to a consistent format which is 

effortlessly easily interpretable and analyzed by humans and machines. Through the 

process of fixing spelling mistakes, using only one lexicon and abbreviation, and unified 

date and number formats, the data present within dataset will be the same quality and 

format standards. 

a. Case Normalization 

In the field of text standardization case normalization is a specific technique, the 

purpose of which is to convert all text characters to a standard case - either to 

lowercase or to uppercase. This technique is frequently used as a pre-process to 

reduce data inconsistency and to make the subsequent tasks like searching, sorting 

or indexing more effective. 

b. Language Filtering 

Language filtering, a key tool for data management, deals with the procedure of 

checking and dividing the text according to the languages in which it is written. 

This, in turn, filters out texts that fail to meet the required grammatical criteria and 
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as well as ensures the linguistic consistency of the remaining data. These standards 

are inescapable for particularly strict guideline adherence cases such as machine 

translation, content moderation, and the case of precisely targeting marketing 

initiatives. 

c. Elongated Word Normalization 

Normalized elongation correction is one major approach in text analytics which 

mostly deals with the modification of deliberately elongated words or the ones that 

are usually seen in informal digital communicating platforms like text messages and 

social media posts. In this selection, words possessing unnecessary character 

duplications are isolated. For example, the word "soooo" would be converted to 

"so", and then it would be revived to its original form. 

d. Character Filtering 

Character filtering emerges as a pivotal practice within the realm of text processing, 

focusing sharply on the elimination of specific undesirable characters—chiefly non-

alphanumeric and special symbols—from textual data. This operation is 

instrumental in purging the data of redundant elements that might otherwise muddle 

or complicate the analysis process. 

e. Language Standardization 

Language standardization involves creating guidelines for written and spoken 

communication to ensure consistency and clarity. This process helps bridge 

linguistic gaps and supports the development of language policies for education and 

government. For example, standardizing tweets by converting "b4" to "before" and 

"gonna" to "going to" makes them easier to understand and more uniform. 

f. Removal of Short and Non-Informative Text 

In a bid to reduce redundancy and improve text quality, unending string of short and 

non-significant text should be eliminated because it does not add value to a text. 

Hence, the text will be mainly composed of meaningful words which will be devoid 
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of unnecessary phrases thus they will enrich the remaining sections rather than 

retaining them. This technique, however, not only purifies the text but it can also 

communicate meaningful messages to a large target pool, thus heightening the 

overall quality and effectiveness of the content. 

g. Short Tweet Removal 

Short Tweet Removal is an improved data cleaning method used in twitter data 

analysis which identifies, and then removes tweets that are significantly rather short 

and devoid of clarity from the dataset. This way of thinking classifies tweets in 

terms of content and meaning thus the dataset binomially enhances the analysis of 

that information. The concentration of research on heavier tweets allows the 

analysts to extract more powerful and interpretable information, which generates 

high-level analytics in the end. 

h. Short Words Removal 

Short Word Removal which is a crucial step of text preprocessing where words with 

less than specific number of characters that usually ranges from two to three are 

discarded from the text. This approach focuses on what may be referred to analytical 

contexts as less consequential words such as 'an', 'in'' and 'at'. 

i. Repeated Punctuation Removal 

Punctuation Removal, which is one of the efficient processes of text processing, 

deals with the elimination of superfluous punctuation symbols (e.g. multiple 

question and exclamation marks) from text documents. Through this, the desired 

outcome such as uniformity of the document, higher readability, and 

professionalism is achieved. This approach is also of great significance for such 

things as sentiment analysis. 

3.4.3 Semantic and Structural Preparation 

The structural and semantic preparation is equivalent to processing text, meanwhile it 

constructs and polish the information which gives a better understanding of data 
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analysis. Based on organizing sentences, paragraphs and documents logically, and by 

adding semantic improvements like synonym replacement and context enrichment, it is 

the purpose of this process to achieve the dataset that interprets information easily, but 

actually optimized through computing models. 

a. Hashtag Normalization 

In the context of natural language technology, normalization of hashtags stands out 

as the major operation performed on the hashtags used in social media to be able to 

understand them. The presented technique of disentangling a hashtag's words with 

the help of extra space (#SocialMedia becomes "social media) plays a significant 

role in the process of meaning extraction and makes text more manageable to 

interpret. Its prime function is to take care of the coherency of the keywords in the 

text, i.e. they should contribute positively to the semantic value instead of losing the 

clarity of the text. 

b. Text Lemmatization 

One of the important NLP techniques is tokenization into lemmas. To merge the 

meaning concepts participants of that process study thoroughly not only the context 

but also the morphological properties of the each of a word. Unlike the primitive 

technique in which affixes are removed and nothing is left but an inaccurate root 

word that lacks lexical context, lemmatization ensures that the derived root word 

correctly represents all the lexical forms meanings of the stem. In such way this 

well-established procedure is essential for improving the accuracy and capability of 

different NLP applications by removing the hassle of morphological variations 

behind language. 

c. Tokenization and Vectorization 

Tokenization and vectorization are the key text processing components of NLP. 

First, the tokenization function piece texts down into discrete terms, known as 

tokens, which simplifies handling big text data. Being that vectorization assigns 

each token a different format by techniques such as one-hot encoding, TF-IDF, and 
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word embeddings. These numerical representations are an integral part of machine 

learning algorithms, allowing them to evaluate and analyse text data with great 

complexity. 

3.4.4 Data Integrity and Enhancement 

Data integrity is vital during the data life cycle to preserve the exactitude, consistency, 

and integrity of the data so that it maintains the unaltered form and becomes the 

representation of information. Rather than that, data enhancement, however, is a process 

focused on raising the level of the provided information by, for example, improving the 

quality of the elements of the given data through processes like cleansing and 

formatting, and, by means of integration, combining other sources of information. 

These processes on the other hand which clear the data with errors and keep it authentic 

also versions and enrich the value, making it more attractive and insightful for careful 

decision making. 

a. Deduplication and Missing Value Handling 

Deduplication is a data cleaning process that mercilessly scrutinizes datasets so as 

to remove any identical records making every distinct record present. That is of the 

essence for the preservation of the desired quality and efficiency of large databases. 

In addition, missing value handling resorts to imputation as a way of replacement 

and deletion of incomplete entries which are important for the statistics of the whole 

dataset.  

Table 3.3 Example of Data Before and After Normalization 

Type of Normalize Raw Tweet After Normalize Label 

Emoji Removal "Can't believe this!         " "Can't believe this!" age 

Stopword Elimination 
"She is the best at 

everything, honestly." 

"She best everything, 

honestly." 
gender 

Entity Stripping 
"@user Check out this link! 

http://example.com" 
"Check out this link!" ethnicity 

URL Shortener 

Removal 

"Amazing article here 

https://bit.ly/abc123" 
"Amazing article here" other_cyberbullying 

To be Continue … 
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Whitespace 

Normalization 
"What are you doing? " "What are you doing?" not_cyberbullying 

Case Normalization 
"Just Watched an 

AMAZING movie!" 

"just watched an amazing 

movie!" 
religion 

Language Filtering 
"Just watched un film 

incroyable!" 

[Removed if non-

English] 
age 

Elongated Word 

Normalization 

"That was soooo 

amazing!!!!" 
"That was so amazing!!!" gender 

Character Filtering "Hello!!!@@@***" "Hello!!!" religion 

Language 

Standardization 

"I can't believe it, it's totes 

amazeballs!" 

"I cannot believe it, it is 

totally amazing!" 
other_cyberbullying 

Removal of Short and 

Non-Informative Text 
"Hi!" [Removed] not_cyberbullying 

Short Tweet Removal "Wow" [Removed] not_cyberbullying 

Short Words Removal "In the a an the he" "In" other_cyberbullying 

Repeated Punctuation 

Removal 
"What?!?!!!" "What?" not_cyberbullying 

Hashtag 

Normalization 
"Loving this #SunnyDay" "Loving this Sunny Day" age 

Deduplication and 

Missing Value 

Handling 

Duplicate entry of 

"Cyberbullying is a 

concern." 

Single entry of 

"Cyberbullying is a 

concern." 

gender 

Text Lemmatization 
"The cars were driven faster 

by the drivers" 

"The car be drive fast by 

the driver" 
ethnicity 

Tokenization and 

Vectorization 

"Cyberbullying is a growing 

concern." 

["cyberbullying", "is", 

"a", "growing", 

"concern"] 

gender 

Table 3.3 Examples of Cyberbullying Before and After Normalization - This 

table shows how the transformation of tweet data through assorted normalization steps, 

demonstrating the effectiveness of each processing technique. 

3.4.5 Addressing Ambiguous Class 

The removal of ambiguously defined classes like "other_cyberbullying" from a dataset 

addresses several issues in machine learning model training: class imbalance, which 

biases the model towards overrepresented classes, and overfitting, where models 

memorize anomalies rather than learn to generalize. By eliminating such classes, 

… Continued 
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training can focus on specific, well-defined categories, thereby improving accuracy and 

generalization capabilities of models on new, unseen data. This strategic method is 

based on techniques such as resampling and data augmentation to get rid of class 

imbalance, thus, the model will have better performance on the classes that are more 

representative (Khan et al., 2024; Wu, 2023). 

3.4.6 Data Augmentation Methodology 

The SynonymAug function that is the keyword module of the nlpaug library utilizes the 

WordNet database to replace synonyms with the words of texts. This aspect of text 

enhancement is very important in the development of datasets, which are needed for 

machine learning projects. An augmentation process is initiated with the creation of a 

synonym augmenter: consum=naz= nuclear option. SynonymAug(aug_src='wordnet'). 

Finally, the function called augment_data is created, which needs dataflow, a class 

label, and an augmenter together with the target sample count which are the inputs. This 

version is exactly for the predefined group and makes the text to be changed for the new 

textual entities. The amplification goes on until the level of the desired sample number 

is reached, thus the class representation becomes the same. The size of the sampling is 

changed to be in accordance with the class scale of augmentation of the classes to that 

of the biggest class of augmentation in the original dataset. The correction of this factor 

is vital since it is the source of the representation of classes being fair and the solution 

of the initial class imbalance (Putu Widiarta Nandana Githa et al., 2024).  

Rationale for Employing Synonym Replacement (Li et al., 2024): 

a. Preservation of Semantic Integrity: The synonym substitution approach proves to 

be a quite delicate technique of text augmentation, as it prevents the change of the 

original content meaning and context. This feature of the model makes it an effective 

tool where content privacy is very crucial, for example, to detect cyberbullying. 

b. Enhancement of Model Robustness: This method increases the lexical richness of 

the dataset, which is then used to train models to recognize and interpret different 

ways of conveying the same meaning. Such flexibility is the key to successful 

accuracy and reliability in classification tasks which is significant. 
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c. Addressing Class Imbalance: Data augmentation was employed after 

preprocessing and cleaning to address the loss of data from various categories caused 

by these processes. Augmentation was utilized to ensure all categories remained 

balanced before initiating the training process. 

The problem of class imbalance in cyberbullying datasets was solved by 

employing data augmentation techniques with SynonymAug function as a substitute for 

synonyms. Texts are replaced with words from WordNet and the meaning of the content 

is kept intact but very careful. For classes that are underrepresented, synthetic samples 

are generated; that allows them to increase to the count which is equal to that of the 

prevalent class. This equilibrium is extremely pivotal for teaching the machine learning 

models to predict and deal with different types of cyberbullying equally. This will thus 

enable the models to handle all the cyberbullying categories with consistent accuracy 

and fairness. Table 3.6 the detailed view on the initial class distribution, count after 

normalization, the required augmentation, and Final Count for each class.  

Table 3.4 Dataset Class Distribution and Augmentation Requirements 

Category Initial Count 
After 

Normalization 

Required 

Augmentation 
Final Count 

Religion 7,998 7906 0 7906 

Age 7,992 7830 76 7906 

Ethnicity 7,973 7418 488 7906 

Gender 7,961 7227 679 7906 

Not Cyberbullying 7,945 5983 1923 7906 

Table 3.4 shows the detailed view on the initial class distribution, count after 

normalization, the required augmentation, and Final Count for each class. 

a. Handling Class Imbalance 

Class weights are designed to be used during the training to mitigate the class 

imbalance. Such weights may be assigned to different learning algorithms for more 

emphasis on minority classes during the learning phase.  
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Table 3.5 Class Distribution Ratios at Different Stages of Data Processing. 

Category 
Initial Distribution 

Ratio 

After Normalize 

Distribution Ratio 

After Augmentation 

Distribution Ratio 

Religion 7998 / 47692 ≈ 0.168 7906 / 41554 ≈ 0.190 7906 / 47463 ≈ 0.167 

Age 7992 / 47692 ≈ 0.168 7830 / 41554 ≈ 0.188 7906 / 47463 ≈ 0.167 

Ethnicity 7973 / 47692 ≈ 0.167 7418 / 41554 ≈ 0.179 7906 / 47463 ≈ 0.167 

Gender 7961 / 47692 ≈ 0.167 7227 / 41554 ≈ 0.174 7906 / 47463 ≈ 0.167 

Not Cyberbullying 7945 / 47692 ≈ 0.167 5983 / 41554 ≈ 0.144 7906 / 47463 ≈ 0.167 

Table 3.5 Presents a visual overview of curriculum adjustments in the dataset 

made to balance the learning and training system. 

b. Label Encoding 

To enhance the processing of cyberbullying categories within ML models, text 

labels are converted into numerical forms through label encoding. This method 

assigns a unique integer to each cyberbullying category, facilitating more efficient 

computation and accurate analysis. Label encoding simplifies the model's task by 

standardizing category representations, thereby ensuring effective and consistent 

performance across various analytical processes. Figure 3.4 provides a visual 

representation of the label encoding process used for the cyberbullying classes 

within the dataset, demonstrating how categorical text labels are efficiently 

converted into numerical identifiers necessary for computational analysis. 

 

Figure 3.4 Visual Representation of Label Encoding in Cyberbullying Classes 
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3.4.7 Visualization and Assessment 

Wordcloud Visualization: The main purpose of word clouds is highlighting the most 

popular terms found in the particular form of cyberbullying. These could cause any 

given category of online harassment to be interpreted in a clearer and more in-depth 

way. On the following wordcloud diagrams which represent each class of 

cyberbullying, —namely not_cyberbullying, gender—related, religious, age—related, 

and ethnicity—based bullying—one it is possible to notice such a difference in 

vocabulary in these categories. These visualizations are helpful as a qualitative measure 

of the dataset's semantic landscape: 

1. The not_cyberbullying wordcloud prominently features neutral and broad-spectrum 

terms like "people," "school," and the abbreviation "RT" for retweet, indicating 

general social media chatter. 

2. Gender—related cyberbullying is captured through a wordcloud where slurs and 

pejorative terms associated with gender and sexual orientation are prevalent, such as 

"gay" and "bitch," revealing the targeted nature of harassment. 

3. The religious category cloud is interspersed with words that highlight religious 

identities and affiliations, including "Muslim" and "Christian," along with 

provocative words like "terrorist," suggesting a context of religious discrimination. 

4. The wordcloud for age—related cyberbullying clusters around terms indicative of 

school life and youth, such as "girl," "school," and "bullied," reflecting a context 

where minors are often targeted. 

5. Lastly, the ethnicity—based bullying cloud is, unfortunately, dominated by racial 

epithets and derogatory language like "nigger," "white," "racist", laying bare the 

reality of racially motivated cyberbullying. 
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Figure 3.5 The wordcloud classes 

Figure 3.5 displays the wordcloud for this category, with words that might be 

specific to [Religious, Gender, Age, Ethnicity and Not cyberbullying] bigotry or slurs 

dominating the visualization. 

3.5 Feature Engineering  

Feature engineering is a crucial step in the data preparation process for machine 

learning. It involves constructing suitable features from raw data, which can 

significantly enhance predictive performance. The process typically includes 

brainstorming potential features, creating new features, and refining them as needed to 

improve the model's accuracy and efficiency (Chia et al., 2021). 

In the development of NLP Machin learning models, especially for identifying 

cyberbullying on social media platforms like Twitter, the feature engineering step is 

crucial. The effectiveness of these models largely depends on the representation of mass 

text data, which will be explored through specific techniques in this context. 

In the domain of cyberbullying detection, feature representation is crucial for 

the performance of both machine learning and deep learning models. Traditional 

machine learning models, such as Random Forest, Logistic Regression, and Support 
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Vector Machines, rely heavily on features like TF-IDF and word embeddings. These 

features are engineered to represent the complex and informal language of tweets. 

However, traditional models often struggle with the intricacies of social media text, 

which can impact their accuracy. Advanced deep learning models, such as RoBERTa 

and LSTM, are designed to capture the contextual and semantic nuances of text. These 

models have shown superior performance in detecting cyberbullying. The effectiveness 

of these models depends significantly on the quality of data preprocessing and the 

selection of feature representation methods. This study emphasizes the importance of 

meticulous feature engineering and preprocessing to enhance model performance, 

providing a comparative analysis of traditional and deep learning approaches. 

The selection of feature representations is crucial for the performance of deep 

learning models in tasks like cyberbullying detection. In this study, standard feature 

representations such as Word2Vec, GloVe, BERT, and Sentence-BERT were chosen 

for their distinct advantages. Word2Vec and GloVe are known for their simplicity and 

speed, effectively capturing semantic relationships between words. They were selected 

for their robustness and efficiency, showing high accuracy and F1 scores in preliminary 

experiments. However, they lack contextual sensitivity, producing the same vector for 

a word regardless of its usage. To address this, BERT was included due to its ability to 

understand context by considering both left and right contexts of words. Despite being 

computationally intensive, BERT's state-of-the-art performance justified its use. 

Sentence-BERT was also selected for its ability to generate semantically meaningful 

sentence embeddings, which are crucial for understanding the intent of entire tweets, 

providing a good balance between performance and computational efficiency.  

Feature representation selections;  In the study of cyberbullying detection on 

Twitter, the choice of feature representations such as Term Frequency-Inverse 

Document Frequency (TF-IDF), Bag of Words (BoW), Word Embeddings (Word2Vec, 

GloVe, FastText), N-grams (Unigrams, Bigrams, Trigrams, N-grams(1-2), N-grams(1-

4)), Hashing Trick, and Character Encoding is well justified due to their robust 

performance in capturing the semantic and syntactic nuances of textual data. These 

methods have been extensively validated in natural language processing (NLP) and text 

classification tasks, demonstrating superior effectiveness in representing textual content 

for machine learning and deep learning models (Yin Zhang et al., 2010). Specifically, 
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Word Embeddings like Word2Vec, GloVe, and FastText are renowned for their ability 

to capture semantic relationships and contextual information, which are crucial in 

identifying the subtle and often context-dependent nature of cyberbullying language 

(Bojanowski et al., 2016; Mikolov, Chen, et al., 2013; Pennington et al., 2014). 

Conversely, the study opted not to include user profile features, such as user 

demographics or account metadata, due to several considerations. Firstly, the focus of 

the research was on analysing the textual content of tweets, aligning with the core 

objective of understanding language use in cyberbullying. Incorporating user profile 

features might introduce bias and privacy concerns, as well as complicating the feature 

space with potentially less relevant information for the linguistic analysis (Waseem et 

al., 2016). 

Additionally, previous studies have shown that while user profile features can 

provide supplementary context, they are often less effective in isolation compared to 

robust text-based feature representations (Davidson et al., 2017). Therefore, prioritizing 

advanced textual feature representations over user profile features ensures a more direct 

and ethical approach to cyberbullying detection on social media platforms. 

In this study, the selection of machine learning models—Random Forest (RF), 

Logistic Regression (LR), and Support Vector Machine (SVM)—along with deep 

learning models—Long Short-Term Memory (LSTM) and RoBERTa—is driven by 

their demonstrated efficacy in the domain of cyberbullying detection and text 

classification tasks. Random Forest is favored for its ability to handle large datasets 

with higher dimensionality and its robustness against overfitting, as highlighted by 

(Alam et al., 2021) and (Ali et al., 2020). Logistic Regression is selected for its 

simplicity and interpretability, providing a baseline for comparison while efficiently 

handling binary and multi-class classification problems (Zaidi et al., 2023). SVM is 

known for its effectiveness in high-dimensional spaces and its capacity to handle 

nonlinear boundaries through kernel trick application, as originally outlined by (Cortes 

et al., 1995)and further supported by studies such as (Fitra Rizki et al., 2021b). On the 

deep learning front, LSTM is particularly adept at capturing temporal dependencies and 

contextual information in sequential data, making it suitable for nuanced text analysis 

tasks, as demonstrated by (Gada et al., 2021) and the foundational work by (Hochreiter 
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et al., 1997). RoBERTa, a transformer-based model, leverages extensive pretraining on 

diverse corpora to excel in understanding the intricacies of human language, thereby 

improving detection accuracy for cyberbullying instances, as evidenced by (Alrowais 

et al., 2024; Liu et al., 2019). This combination of ML and DL models allows for a 

comprehensive approach to cyberbullying detection, balancing interpretability and 

performance across varying data characteristics and classification complexities  (Afrifa 

et al., 2022; Alqahtani et al., 2024). The features utilized in this study are outlined 

below: 

3.5.1 TF-IDF Vectorization 

The text-to-vector transformation process with TF-IDF technique is applied. It adjusts 

the significance level of each word by its relevance across the documents. This leads to 

an emphasis on the infrequent words over and above the frequent ones thereby 

emphasizing the unique words. The utilized TfidfVectorizer of Scikit-learn has just 500 

feature limits to maximize the effectiveness of the machine learning performed. 

Efficacy of this transformation is proved and established by the final shapes of the 

transformed data visuals, in which it is clear that the text data had been reduced to the 

exact number of features required, resulting in enhanced computational efficiency. 

3.5.2 Word Embeddings Techniques 

1. Word2Vec: Word2Vec is deployed for the purpose of representation of relative 

meanings which is one of the most difficult aspects of the subtle semantic contexts 

of cyberbullying in text. The application process involves converting the tokenized 

texts to the already developed models. Furthermore, the size of each vector is 

dynamically estimated based on the number of words specific for each text to the 

fourth root. In particular, the Word2Vec model is built up with the help of the 

Gensim library on the tokenized training data, where processed embeddings can 

preserve the semantic aspects that are later recombined in order to assemble the 

sentence-level embeddings. These vectors are well suited for classificational 

purposes hence in detection of indictors of cyberbullying that may be imbedded in 

the communication. 
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2. GloVe (Global Vectors): GloVe has the ability to apply the global statistic 

property of a corpus to create vectors for words. Glove can capture conditional 

meanings as well as words that are frequently used in the cyberbullying context. In 

this research, GloVe embeddings are pre-trained and are read from an external file. 

Each sentence in the training and test sets is expressed as a vector through 

averaging of the embeddings of the words that make it up. As a result of this 

method, even such refined semantic relations in the text matter and can be taken 

into account in detecting cyberbullying. 

3. FastText: Having been invented by Facebook, FastText, which is an extension to 

the concept of Word2Vec, is the foundation of any modern-day social media 

analysis that has to deal with slang, typos, and concatenated words. Through 

FastText's ability to analyse the subwords or n-grams of characters within a word, 

it can even generate more precise word representations for unconventional words 

that are not very well-known or are newly coined words which is quite typical in 

the fast-moving linguistic context of Twitter-like platforms. For the study, FastText 

with zero embeddings for out-of-vocabulary words or by using padding for uniform 

feature size across different texts will be used. 

3.5.3 N-Gram Features 

N-gram features represent certain text sequences into the set lengths, such as unigrams 

(singlewords) or n-grams of more extended sequences. Prominent markers like this are 

essential for the identification of the contextual relationships between words in texts, 

which allows the model to have a capability of discerning patterns pertinent to the 

cyberbullying detection. 

In the context of the cyberbullying detection project, the n-gram features are 

derived by the CountVectorizer from Scikit-learn being configured to compile and 

vectorize up to four words concurrently (four-grams). The process is as follows: 
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1. Unigrams to Four-grams Extraction: 

i. Unigrams: The simplest form of n-grams, capturing individual word usage, is 

extracted using CountVectorizer set to ngram_range = (1, 1). 

ii. Bigrams: Sequences of two words are extracted to capture immediate word-to-

word relationships, using ngram_range = (2, 2). 

iii. Trigrams: Three-word sequences are extracted to gain deeper contextual 

insights, set with ngram_range = (3, 3). 

iv. Four-grams: The extraction of four-word sequences provides the most context 

within the constraints set, using ngram_range = (4, 4). 

Each configuration limits the features to a maximum of 500 to maintain 

computational efficiency and focus on the most important ones. 

2. Vectorization: 

Each level of n-gram features is transformed into a dense matrix representation, where 

each row corresponds to a document and each column represents an n-gram feature. 

This transformation is crucial for feeding textual data into machine learning models that 

require numerical input. 

3. Dataset Transformation Shapes: 

The outcome is in the form of arrays with the shapes holding the number of sample and 

the extracted features. This shape is one of the crucial components for maintaining the 

input dimensions on the constant level throughout several stages of the machine 

learning pipelines. 
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3.5.4 Advanced Transformations 

▪ Hashing Vectorization: Hashing vectorization is the main mechanism in 

agglutinative text data compression. The feature of this vectorization is numeric 

formatting of data (assuming that predefined vocabulary is not used). Here the 

HashingVectorizer class will process the operation, this later will transform the 

text into feature vectors of 500 size, if specified. The procedure operates on the 

principles of a hash function that utilizes a non-linear mapping which converts 

the textual information with the help of a high-dimensional character space. By 

using this technique, the processing of the big data can get faster because less 

memory space is needed which may consequently encourage the data process. 

In the example, by hash function vectorization, the machine learning algorithm 

can look smoothly through a vast dataset, with features extraction still being 

computationally reliable even for a huge dataset. 

▪ Character Encoding: The process of character encoding within this project is 

to have each character in the text transformed to its corresponding ASCII. This 

part is crucial to get the syntax of the text in the detail. Another part of the 

method entails padding or truncation of the encoded values to the fixed length, 

equal to the maximum length seen in both the training and testing sets, hence, 

the input size for the models will always be the same. The application of n-

grams improves the recognition of patterns that depend on the character 

composition, which is an essential feature for identifying cyberbullying 

behaviours that employ slight text modifications not detectable by traditional 

word and token-based techniques. 

3.5.5 Comprehensive Features (Combination of N-Grams) 

1. N-Grams (1-4): The vectorization of all n-grams from one to four words, in turn, 

creates a dense and comprehensive feature set containing linguistic clues and 

structures from a large spectrum of the scale. Along with this characteristic, the 

feature set is crucial for the models that depend on syntax and context within the 

text. 
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2. N-Grams (1-2): Simultaneously, the following feature extraction considers single-

words and bigrams. Whereas the former captures the word usage of an individual 

context for an entity and the latter records the consecutive words relationship, the 

combination is the most advantageous. 

The vectorized n-grams are turned into arrays which form the basis for the 

cyberbullying detection algorithms. The transformed datasets are carefully shaped and 

then checked to ensure their dimensions accurately represent the textual data in the 

transformed space. 

3.5.6 LSTM Features 

LSTM models utilize several key features for processing and analyzing sequential data, 

particularly in the context of cyberbullying detection: 

1. Embedding Dimensions: High-dimensional embeddings provide a nuanced 

understanding of input features. In the study, embedding dimensions (e.g., 128 and 

200) were used to capture complex patterns in the text data. 

2. Hidden Units: A larger number of hidden units (e.g., 256) in the LSTM layers help 

in capturing more detailed information from the input sequences. 

3. Input Gates, Forget Gates, and Output Gates: These gates regulate the flow of 

information, allowing the LSTM to effectively manage long-term dependencies in 

the data. 

4. Activation Functions: Sigmoid and hyperbolic tangent functions are used to 

compute gate vectors and work as activation functions within the LSTM cells. 

3.5.7 RoBERTa Features 

RoBERTa, an advanced version of the BERT model, employs several enhancements in 

its architecture and training methodology: 
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1. Pre-trained Embeddings: RoBERTa uses embeddings that are pre-trained on large-

scale unlabeled text data. This helps in capturing rich semantic information and 

contextual nuances from the text. 

2. Dynamic Masking: During training, RoBERTa dynamically changes the masking 

patterns applied to the training data, which improves the model's robustness and 

performance. 

3. Fine-Tuning on Specific Tasks: After pre-training, RoBERTa is fine-tuned on 

specific downstream tasks, such as cyberbullying detection, to enhance its 

performance on these tasks. 

4. Attention Mechanisms: RoBERTa leverages the self-attention mechanisms from 

the Transformer architecture to effectively process and understand the input 

sequences. 

3.6 Models Application 

During this phase of the study, machine learning and deep learning models are going to 

be utilized to train, adjust, and modify the final tool, all of which should be able to detect 

cases of cyberbullying that have been shared on Twitter. Different models which are 

Random Forests (RF), Logistic Regression (LR), and Support Vector Machines (SVM), 

as well as more complex neural networks such as LSTM and RoBERTa models are 

applied. 

3.6.1 Traditional Machine Learning Models (ML) 

1. Random Forest (RF): Based on text data as a source of information and combines 

TF-IDF score and n-grams into its features with its balanced ability in dealing with 

dataset. The proposed procedure of the training machine uses a grid search with a 

pattern structure and determines the model effectiveness by accuracy, precision, 

recall, F1-score indicators. Model Curve and Complexity Curve, which act as a result 

of a different number of trees' model behaviour is presenting the visualize of the 

model complexity level. 
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2. Logistic Regression (LR): Utilized for its efficiency and interpretability, Logistic 

Regression in this project is configured to explore different regularization techniques 

to prevent overfitting. The model undergoes fine-tuning through various solver and 

penalty configurations to enhance its effectiveness in detecting cyberbullying. Its 

performance is carefully evaluated and visually represented in plots to monitor the 

progression of learning outcomes across different iterations. 

3. Support Vector Machines (SVM): This model is chosen because it has the superior 

ability to traverse the high-dimensional spaces usually involved in text classification 

tasks. SVM work with different kernel functions to do the best possible fit of both 

linear and non-linear relationship in the dataset. In the training process, the employ 

a thorough investigation of the choice of C parameter and the gamma values to fine-

tune the decision boundaries priming the margin classification model. 

When the Random Forest, Logistic Regression, and SVM are tested for 

effectiveness in the prediction of multiclass cyberbullying, the validation results 

confirm their effectiveness. The current academic research has proven that these 

algorithms are very accurate, precise, and recallable in distinguishing the different 

levels of cyberbullying, which shows that they are very useful in real life (Ali et al., 

2020; Islam et al., 2023; Muzakir et al., 2022). 

Such models are widely applauded for their ability to process and study data, 

which has complex and layered data structures that normally prevail in the social media. 

Also, these models are known to be very adaptable to the unique features of 

cyberbullying data such as textual, metadata and network dynamics. In a nutshell, 

Random Forest performs well with large volumes of data by integration its model as an 

assembly of decision trees sensitizing the different factors revolving around 

cyberbullying. Logistic Regression gives us the chance to find out the probability of 

certain features that can be related to cyberbullying classification and this is very helpful 

for the interpretive analysis. The SVM texture which is one of its strong appropriations 

has the skill to unearth intricate patterns within the text allowing it to identify subtle 

cyberbullying cues with relative ease. Cumulatively, the utilization of these models in 

prior research that proved their application affords rational basis for their continued use 
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in related settings. As a result, the new study is enabled to build and build on proven 

frameworks and to utilize as benchmarks, standard outcomes thus eliminating the 

confusions of model selection and enhances the rigor in the analysis of cyberbullying 

research. 

3.6.2 Deep Learning Models (DL) 

1. LSTM: This model outperforms in situations where contextual information of the 

sequence proves of great significance. The employ the LSTM approach to deal with 

the embedding of words, with dependencies along the sets of sentences considered. 

Adjustments are being done to the layers, nodes and dropout rates after the learning 

stage to improve its performance, with progress showcased through accuracy and 

loss curves. 

2. RoBERTa: Considered one of the leading models in natural language processing, 

RoBERTa is particularly well-suited for cyberbullying detection. This is due to its 

enhanced pre-training process on a larger dataset and longer sequences compared to 

BERT, resulting in better performance in language understanding tasks. Transfer 

learning is a key aspect of RoBERTa, starting with a pre-trained language model 

which is then fine-tuned with domain-specific data to improve detection accuracy 

for specific categories of cyberbullying. The training process involves various 

learning rates and batch sizes, and during the evaluation phase, standard 

classification metrics and confusion matrices are employed to assess the model's 

effectiveness. While BERT is also highly effective, RoBERTa's improvements in 

training strategies and data utilization make it more adept for this particular task (Liu 

et al., 2019). 

Many recent studies have demonstrated the effectiveness of LSTM and 

RoBERTa in detecting cyberbullying in multi-class scenarios. These deep learning 

models, renowned for their applicability to sequential and textual data processing, are 

particularly noted for their ability to model complex language structures necessary for 

identifying and categorizing cyberbullying content (Alrowais et al., 2024; Faraj et al., 

2024) . 
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Each model is designed to be a combination of the best of the strengths 

therefore, to increase the effectiveness and the scalability factors of the online 

cyberbullying detection solution. The design of the tests and the validation of the 

models are necessary to ensure that the models are indeed effective in terms of the 

accuracy and the reliability on realistic situations, hence the results obtained will be 

convincing proving the application of machine learning and deep learning techniques 

in real life scenarios. 

3.7 Evaluation 

The assessment phase of the project is absolutely essential for achieving the goal of 

recognizing cyberbullying cases through effective machine learning models. This phase 

will include performing necessary conditions and conducting experiments with various 

quantitative metrics and techniques to determine model performance under different 

conditions and configurations. 

During the final phase of the study, which is the evaluation stage, the ways to 

measure the true effect of the machine learning models that were applied for 

cyberbullying detections are very important. In this step, different performance metrics 

as well as quantitative works will be used to see that the optimum status of each model 

can be reached under different conditions and parameter settings. 

3.7.1 Evaluation Techniques 

Performance Metrics: The study employs a comprehensive suite of performance 

metrics to evaluate the efficacy of ML models in detecting cyberbullying. These 

metrics include: 

1. Accuracy: Measures the overall correctness of the model across all the classes, 

providing a general indication of performance. 

Referring to the Equation 3.1 below, Accuracy Equation 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of correct predictions

Total number of predictions
 (3.1) 
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2. Precision (Positive Predictive Value): Evaluates the model's ability to identify 

only relevant instances as positive, crucial for minimizing false positives. 

Referring to the Equation 3.2 below, Precision Equation 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3.2) 

3. Recall (Sensitivity or True Positive Rate): Assesses the model's effectiveness 

in identifying all actual positives, essential for ensuring no instance of 

cyberbullying is overlooked. 

Referring to the Equation 3.3 below, Recall Equation 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3.3) 

4. F1-Score: Harmonic mean of precision and recall, offering a balance between 

the two, especially useful in scenarios with uneven class distributions.  

Referring to the Equation 3.4 below, F1-Score Equation 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
 (3.4) 

Additional metrics used are: 

Macro-Average Metrics: Computes the average scores (accuracy, precision, recall, 

F1-score) across all classes, ensuring equal weight to each class, beneficial in 

imbalanced datasets. 

Referring to the Equation 3.5 below, Macro Average Accuracy Equation 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
 ∑ (

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖  +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖
)

𝑁

𝑖=1
 

(3.5) 

Referring to the Equation 3.6 below, Macro Average Precision Equation 
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𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑁
 ∑ (

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖
)

𝑁

𝑖=1
 

(3.6) 

Referring to the Equation 3.7 below, Macro Average Recall Equation 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝑁
 ∑ (

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖
)

𝑁

𝑖=1
 

(3.7) 

Referring to the Equation 3.8 below, Macro Average F1-Score Equation 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
1

𝑁
 ∑ (2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖  ×  𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖  +  𝑅𝑒𝑐𝑎𝑙𝑙𝑖
)

𝑁

𝑖=1
 

(3.8) 

Where Precision i, Recall i, are the Precision and Recall for class i. 

3.7.2 Application Across Algorithms 

1. Hyperparameter Tuning: In the course of evaluating the Hyperparameter tuning 

and fine-tuning in the various ML and deep learning models, it is understood to be a 

strategically planned implementation aimed at achieving enhanced cyberbullying 

detection. For the traditional machine learning models, for example, Random Forest, 

Logistic Regression, and SVM, hyperparameter tuning is a critical activity of 

respective parameter settings searching and selecting process management by 

GridSearchCV tool, including n_estimators, C, and kernel type, where lack of which 

may cause model accuracy and overfitting difficulties. However, for deep learning 

models like LSTM and RoBERTa, the attention moves towards fine tuning, where 

challenges for the later stages are set on optimal hyperparameter settings to 

normalizes the models to the peculiar features of the dataset concerned. Here 

contrasts over the techniques of traditional and deep required learning diverge which 

underlines the intrinsic differences in an algorithm searching for the best parameters 

contrasts with fine-tuning the pre-conceived conditions to achieve higher efficiency 

on individual tasks. 
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2. Cross-validation: The implementation of cross-validation methods in machine 

learning algorithms is an imperious approach for the improvement of model's 

credibility as well as accuracy in the area of social media platforms cyberbullying 

detection. When working with traditional machine learning models such as Random 

Forest, Logistic Regression and Support Vector Machines, cross-validation is a 

popular approach to hyperparameter optimization. Implementation of 

GridSearchCV, with its characteristic of covering a wide range of configurations, is 

another technique that is used to optimize the model by measuring the performances 

on the base of metrics such as accuracy and ensure that the model generalizes well 

on the unseen data. 

On the other side, in deep learning models like LSTM and RoBERTa, cross-

validation is rarely applied due to their high computational costs and the complicated 

data structure, these kinds of methods handle. Particularly, LSTM and RoBERTa make 

use of the alternative approaches, including the split validation and training, to prevent 

overfitting and comply with the limitations of the context that large datasets bring in 

addition to the nature of the data which is sequential. Based, therefore, on these factors, 

namely, the model structure and the computing capacity available, the type of cross-

validation or its alternatives is mostly chosen. This emphasizes a case-by-case 

methodology toward model training and validation in machine learning. 

Each of the model types has its own merits and demerits and therefore, should 

be accorded the due considerations. This is to achieve the optimum partition for a given 

application. 

3.8 Summary 

This chapter outlines the detailed approach applied to the cyberbullying detection 

problem solving through the conventional machine learning and the deep learning 

techniques. The methodology is broken down into the several phases, which start with 

the design of the research and the collection of data, thus, the cyberbullying instances 

on Twitter are presented in a very diversified and representative way. This is followed 

by the application of data normalization and preprocessing techniques to the dataset for 

the analysis, which includes removing emojis, stopping repeated words, and text 
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standardization. TF-IDF, word embeddings, and n-grams among other methods of 

feature engineering are used to boost the textual data representation. 

The chapter also delves into the use of various models, which are mostly the 

traditional machine learning algorithms like Random Forest (RF), Logistic Regression 

(LR), and Support Vector Machines (SVM) but also the advanced ones like LSTM and 

RoBERTa. Each model, accordingly, to its performance metrics, like accuracy, 

precision, recall, and F1-score, is trained and tested in order to make sure that it can 

detect and categorize the cyberbullying content successfully. The last step is the detailed 

assessment that will be done by using these metrics to see which model has the better 

performance and also to check if they are applicable in the real world. This article is 

intended to create a structured way of the study that will result in the production of the 

reliable and robust cyberbullying detection systems.
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CHAPTER IV  

 

 

EXPERIMENTS AND RESULTS FOR MACHIN LEARNING 

4.1 Introduction 

This chapter discusses experiments and the findings of the extensive literature on 

machine learning (ML) in detecting cyberbullying. The objective is to compare results 

attained with model sorts and feature extraction techniques to decide how proper 

perception of the diverse circumstances can be categorized as cyberbullying and 

recognized with the assistance of machine learning algorithms on social media networks 

efficiently. The chapter is divided into 4 sections where a significant aspect of the 

execution and results is highlighted. Section 4.2 describes the technological context of 

the experiment setting: such as programming languages and tools of different versions 

and hardware characteristics. Section 4.3 looks at how the feature extraction process 

can be utilized to transform the text data into vector representation. Section 4.4 

discusses the findings and analysis section marked by the designation of various models 

based on the performance criteria. Finally, section 4.5 provides a brief discussion and 

main contributions from the experiments.  

4.2 Experiment Details 

The Machine Learning experimental setup is carried out on Jupyter notebook and 

Python. A proper fit is ensured by the Anaconda Navigator integration that encourages 

easy running of Jupyter Notebooks directly in a web browser for future analysis and 

representation. 

The hardware specifications for the study comprise NVIDIA GeForce RTX 

4080 LAPTOP GPU, 13th Generation Intel Core i9-13950HX processor, 12GB of 

RAM expandable to 64GB, and 1TB of storage; These rich computing power and 
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storage capacity will be enough for ML models training, including complicated data 

processing. 

The experiments used Python with key libraries such as Scikit-learn for machine 

learning models, and gensim for handling some of the text embeddings. Each model 

was evaluated using a variety of text feature extractions to determine which methods 

yield the best performance in terms of accuracy, precision, recall, and F1-score. Table 

4.1 provides a list of the primary libraries and tools utilized in the experiments: 

Table 4.1 Primary Libraries and Tools 

Package Description 

NumPy and Pandas  Employed for data manipulation and numerical computations. 

Scikit-learn Used for implementing machine learning algorithms. 

Gensim Utilized for managing word embeddings like Word2Vec and FastText. 

NLTK Employed for text processing and feature extraction. 

Matplotlib Used for generating visualizations of the model performances. 

Lpaug Augmenter This module from the nlpaug library provides functionalities to augment 

textual data using natural NLP techniques 

wordcloud Used for generating a visual representation of word frequency in text data. It 

creates a "word cloud" from text, which highlights the most frequently 

occurring words in a visually appealing format. 

Transformers  Provides state-of-the-art general-purpose architectures for NLP, including 

BERT, GPT-2, T5, etc. It allows for easy use of these models for text 

classification, generation, and translation. 

PyTorch Also known as PyTorch, this is a library for machine learning that provides 

flexibility and speed in building deep learning models, essential for handling 

the computational aspects of neural networks. 

4.3 Discussion On Feature Extraction 

Feature engineering is the process of converting raw data using methods that make data 

more effective to apply when modelling machine learning algorithms, which is indeed 

the most important thing when it comes to the success of such algorithms. As covered 

in the work adopted several feature engineering techniques which are supported to 

process a variety of text data. Each feature extraction technique was selected for its 

ability to capture different aspects of the text data: 
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1. TF-IDF (Term Frequency-Inverse Document Frequency): Measures the importance 

of words in the text relative to their frequency across all documents, TF-IDF helps 

highlight significant words that are more informative for classification. 

2. Bag of Words (BoW): Represents text by the frequency of each word, BoW is simple 

and effective for capturing basic text patterns. 

3. Word Embeddings (Word2Vec, GloVe, FastText): Converts words into dense 

vectors that capture semantic relationships, Word embeddings provide richer 

contextual understanding and capture semantic similarities between words. 

4. N-grams (Unigrams, Bigrams, Trigrams, N-grams(1-2), N-grams(1-4)): Captures 

sequences of words to understand context, N-grams preserve some context and are 

useful for detecting phrases and co-occurrence patterns. 

5. Hashing Trick: Maps text data into fixed-size vectors using a hashing function, 

reduces dimensionality and manages large vocabularies efficiently. 

6. Character Encoding: Captures stylistic and syntactic features at the character level, 

Useful for detecting stylistic nuances and specific patterns related to cyberbullying. 

The data cleaning and preprocessing steps applied in this research represents a 

complete solution for getting textual data ready for machine learning applications. The 

method begins with the initialization of essential tools like lemmatizers and stopwords, 

and then it consists of a set of functions, the main purpose of which is to clean-up the 

text data. These functions actively deal with several functions, such as eliminating 

emoji, URLs, non-English characters, numbers, and punctuation marks; transforming 

contractions into words; lemmatization and short or elongated words filtering. The 

cleansed text is later used to generate a structured dataset by importing raw data, 

applying the cleaning functions, and saving the cleaned output.  

Additionally, the pre-processing step involves handling duplicates, checking 

class distribution, and augmenting data using synonym replacement to address class 

imbalances. These pre-processing steps help create a noise-free, balanced dataset with 

sufficient linguistic features for effective model training and evaluation. Visualizing the 

distribution before and after augmentation enhances the transparency and 

interpretability of the data preprocessing pipeline. 
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4.3.1 TF-IDF Feature Vectorization 

TF-IDF is a widely used method to convert text into numerical values that highlight 

important words in a document relative to their occurrence in the corpus. It helps in 

reducing the impact of commonly used words that carry less information. The shapes 

(31624, 500) for training and (7906, 500) for testing indicate that each document is 

represented by a 500-dimensional vector. This dimension is limited to the most 

significant 500 words in the dataset, making it a compact and informative 

representation. 

4.3.2 Bag-of-Words (BOW) 

BoW represents text by the occurrence of words without considering order or context. 

It is a simple and effective method for text classification tasks. The shapes (31624, 500) 

for training and (7906, 500) show that each document is represented by a 500-

dimensional vector based on word frequency. This straightforward representation is 

often effective for basic text analysis and classification tasks. 

4.3.3 Word Embeddings (Word2Vec, GloVe, FastText) 

Word embeddings capture semantic meanings of words by converting them into vectors 

such that words with similar meanings have a similar representation. This research 

observes three different types of embedding models as follows: 

1. Word2Vec: The Word2Vec model was customized to the dataset by training on the 

tokenized tweets. The decision to utilize a relatively small vector size of 14 was 

strategically made to balance the need for capturing essential contextual information 

while maintaining computational efficiency. Smaller vector dimensions are 

advantageous in reducing computational complexity and memory usage, which is 

particularly beneficial when dealing with large datasets. Despite the reduced 

dimensionality, the optimized Word2Vec model retains sufficient capacity to discern 

subtle contextual clues.  
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The shapes (31624, 14) for training and (7906, 14) for testing indicate that 

each document is represented by the mean of its word vectors, with an optimal vector 

size of 14 derived from the unique words in the dataset. This compact representation 

effectively captures the semantic nuances of the words while ensuring that the model 

remains computationally efficient and scalable for large datasets. The choice of a 14-

dimensional vector strikes a balance between preserving critical contextual 

information and minimizing resource usage, making it a practical solution for real-

world applications. 

2. GloVe (Global Vectors for Word Representation): Constructs word embeddings 

by leveraging statistical information from the entire corpus, capturing both local and 

global contexts. Utilized pre-trained embeddings which likely include a broader 

context from a larger corpus, resulting in vectors of size 200. This can be 

advantageous for capturing subtleties in language that are not represented in the 

training data alone. 

GloVe embeddings, sourced from a Stanford NLP pre-trained model and 

loaded from 'embeddings/glove.twitter.27B/glove.twitter.27B.200d.txt' (GloVe: 

Global Vectors for Word Representation, n.d.). The shapes (31624, 200) for training 

and (7906, 200) for testing indicate that each document is represented by a 200-

dimensional vector. This representation, derived from averaging the word vectors, 

effectively captures the sentiment and thematic nuances of tweets. The choice of a 

200-dimensional vector is based on its ability to provide a detailed yet efficient 

representation of text. 

3. FastText: Similar to GloVe, but also considers subword information, which can be 

particularly useful for social media text where misspellings and slang are common. 

The vectors of size 300 ensure a rich representation. 

FastText holds the complexities of social media language, including slang 

and misspellings, by embedding subwords. The embeddings, loaded from 

'fasttext/cc.en.300.vec/cc.en.300.vec' (Word vectors for 157 languages · fastText, 

n.d.). The shapes (31624, 300) for training and (7906, 300) for testing indicate that 
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each document is represented by a 300-dimensional vector. These vectors are 

derived by averaging the word embeddings, ensuring a standardized and consistent 

representation of tweets. This rich representation captures the intricate details of 

social media language, enhancing the model's ability to detect cyberbullying. The 

choice of 300 dimensions balances the need for a detailed representation with 

computational efficiency, making it well-suited for processing large datasets with 

complex linguistic features. 

In cases where memory efficiency is a problem, GloVe and FastText models, 

tackle large vocabularies and embedding matrices, because they allow the loading of 

just the needed components and not the whole model. The use of pre-trained models 

GloVe and FastText model models able to adapt changes in social media environment 

especially new words and slang are captured properly. 

4.3.4 N-grams (Unigrams, Bigrams, Trigrams, Four-grams): 

The challenge to specify phrases and regional features in the text, which matter a lot 

when one interprets the intentions behind that tweet. Each n-gram technique 

concentrates on some aspects of the word combination lengths, and 500 words have 

been used as the maximum set to ensure a good balance between the detail and the 

computation time. These functions assist, thus, to find certain patterns of language that 

are relevant for cyberbullying. 

1. Combination of Unigrams and Four-grams (N-grams 1-4): This complete 

building was primarily used for extracting features such as individual words, duo-

words and sequence of four words. Furthermore, with a setting of max features to 

500, the ensure that all the most relevant and vital phrases are captured, while 

balancing between extremely detailed and lengthy textual representation and the 

computational efficiency. This versatile range of N-grams is a feature that expedites 

the recognition and understanding of many linguistics tools, ranging from simple to 

complex. 

2. Combination of Unigrams and Bigrams (N-grams 1-2): The combination of 

unigram and bigram record each word, its surrounding words, sentence structure and 
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semantic relations. It happens when the sentence structure and semantic relations are 

used as a base for the construction of a model that also catches wide vocabulary and 

recognizes specific two-word conjunctions. These conjunctions might be very 

important for understanding cyberbullying. 

Expanding n-grams will thus bring more context into the model. However, it 

will also increase number of features, and hence, brings the question of computational 

overhead and, probably, overfitting if underestimated. In certain cases, restricting five 

of the sets in the program to 500 features might lead to some information missing. 

Common words may also be important, but they are removed due to low frequency in 

a given text. 

4.3.5 Feature Hashing (Hashing Trick) 

Feature Hashing reduces dimensionality and computational complexity, while BoW 

counts the frequency of words. Both methods produce a fixed-size representation of text 

(500 features), ensuring that the models are not overwhelmed by the high 

dimensionality typically associated with raw text data. The HashingVectorizer is 

particularly useful in environments with limited computational resources because it 

does not require a two-pass fitting and transformation process, unlike other vectorizers. 

The shapes (31624, 500) for training and (7906, 500) indicate that each 

document is represented by a 500-dimensional vector, with features mapped using a 

hash function. 

4.3.6 Character Encoding 

Character encoding converts each character to its ASCII value, capturing the exact 

textual representation. This method is useful for tasks sensitive to spelling and 

punctuation. The shapes (31624, 173) for training and (7906, 173) for testing indicate 

that each document is represented by a sequence of 173-character encodings. This 

length was determined based on the longest text in the dataset, ensuring that each 

document, regardless of its original length, is truncated or padded to this fixed size.  

By using a fixed length, the model can process the text data consistently. This 
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representation effectively captures detailed textual information, allowing the model to 

consider the exact character composition of the text, which is crucial for tasks where 

precise textual details matter. 

All feature representation techniques used in this study were designed to limit 

the feature space to 500 dimensions. This decision was crucial for managing memory 

usage and computational speed, particularly important when scaling to large datasets or 

deploying in real-time systems. Techniques like TF-IDF and n-grams can produce 

sparse matrices, which might affect model performance. Sparse representations were 

handled efficiently to ensure they did not negatively impact the training process.  

Table 4.2 The Best Hyperparameters for Random Forest by Features  

Feature Extraction Type Training Set Size Testing Set Size 

TF-IDF (31624, 500) (7906, 500) 

Feature BoW (31624, 500) (7906, 500) 

Word Embeddings - Word2Vec (31624, 14) (7906, 14) 

Word Embeddings - GloVe (31624, 200) (7906, 200) 

Word Embeddings - FastText (31624, 300) (7906, 300) 

Feature Hashing (Hashing Trick) (31624, 500) (7906, 500) 

Character Encoding (31624, 173) (7906, 173) 

Unigrams (31624, 500) (7906, 500) 

Bigrams (31624, 500) (7906, 500) 

Trigrams (31624, 500) (7906, 500) 

Four-grams (31624, 500) (7906, 500) 

N-grams (1-4) (31624, 500) (7906, 500) 

N-grams (1-2) (31624, 500) (7906, 500) 

Table 4.2 states the best hyperparameters for the Random Forest algorithm when 

used with different feature extraction methods. The dataset is segmented into training 

and testing sets, with the same sizes for each feature type. Basically, TF-IDF, BOW, 

and the others use a 500-dimensional feature space, while word embeddings such as 

Word2Vec, GloVe, and FastText have different dimensions (14, 200, and 300, 

respectively). This detailed comparison of the Random Forest algorithm with various 
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features techniques shows that the model is able to adapt to different textual 

representations, thus proving its robustness. 

4.4 Results And Discussion 

The experimental results provide a comprehensive view of how different machine 

learning models perform with various feature extraction methods under a range of 

hyperparameter settings. 

4.4.1 Random Forest (RF) 

The comprehensive evaluation of the Random Forest classifiers trained on diverse text 

feature types reveals significant insights into model performance, feature effectiveness, 

and the influence of hyperparameters. Below is a synthesized analysis across different 

metrics and feature types. Table 4.3 The comparative Performance Metrics of the 

Random Forest Algorithm by features: 

Table 4.3 Comparison Results for the Random Forest by Features 

Features Accuracy Precision Recall F1- score 

tfidf 0.9326 0.9358 0.9326 0.9335 

bow 0.9321 0.9348 0.9321 0.9329 

word2vec 0.8883 0.8890 0.8883 0.8880 

glove 0.8749 0.8796 0.8749 0.8756 

fasttext 0.8745 0.8792 0.8745 0.8749 

hashing 0.9209 0.9243 0.9210 0.9219 

char_enc 0.4929 0.5019 0.4929 0.4860 

unigrams 0.9321 0.9348 0.9321 0.9329 

bigrams 0.7425 0.8282 0.7425 0.7556 

trigrams 0.4540 0.8105 0.4540 0.4489 

fourgrams 0.3052 0.8447 0.3052 0.2485 

n-grams (1-4) 0.9317 0.9341 0.9317 0.9325 

n-grams (1-2) 0.9309 0.9335 0.9309 0.9317 

Table 4.3 shows the performance of the Random Forest algorithm for different 

features, thereby highlighting the relative efficiency of each feature. TF-IDF and 

present the highest accuracy, precision, recall, and F1-score. Character encoding and n-
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gram features, especially trigrams and fourgrams, exhibit a lower success rate, proving 

that these techniques have some shortcomings for this task. The variability of these 

results clearly shows the need of choosing the right feature extraction methods to get 

the best model performance. Figure 4.1 represents the data in Table 4.2 by highlighting 

significant performance discrepancies between different features, making it easier to 

digest the Random Forest algorithm's response to different textual representations. 

 

Figure 4.1 Comparison Random Forest Performance by Features  

Figure 4.1 present the performance metrics of the Random Forest (RF) model 

across various feature extraction types, evaluating accuracy, precision, recall, and F1-

score. TF-IDF and BoW consistently achieve the highest performance across all 

metrics, with TF-IDF leading slightly (accuracy: 93.26%, precision: 93.58%, recall: 

93.26%, F1-score: 93.35%). FastText and hashing also show strong performance, with 

hashing notably achieving high precision 92.43%. 

Conversely, character encoding (char_enc) and higher-order n-grams (trigrams 

and fourgrams) perform poorly, with fourgrams having the lowest accuracy (30.52%) 

and F1-score (24.85%). The discrepancies indicate that simpler feature extraction 

Pus
at 

Sum
be

r 

FTSM



77 

 

methods like TF-IDF, BOW, and unigrams are more effective for the RF model due to 

their ability to capture essential text information without excessive dimensionality. On 

the other hand, elaborate measures such as Contextual encoding of characters and 

n>grams up to a certain value can aggravate the noise level and are likely to increase 

dimensionality, thus reducing the likelihood of a good model. Based on this analysis, 

RF models are better off when simple and efficient feature extraction methods are 

employed, thereby giving improving classification results. 

All the features reveal a broad spectrum of performance depending on the 

chosen measure with the simple and combined features showing the highest overall 

performance while fourth order n-grams and char_enc achieve the worst performance 

out of all the tested models. Here's an in-depth look into why these variations occur: 

1. High-Performance Features: Features like TF-IDF, n-grams (unigrams to ngrams 

(1-2), and BoW demonstrated high accuracy, precision, recall, and F1-scores, often 

surpassing 93%. These methods effectively capture key textual information, which 

helps in accurately classifying texts. 

2. Moderate-Performance Features: With Word2Vec, GloVe and FastText, they 

achieve average results, with the accuracy ranging from 87-88%. While these 

features may be important for capturing semantic relationships between the entities, 

they are possibly not isomorphic to the exact nuances needed by the classification 

function without the extra depth offered by network architectures or context. 

3. Low-Performance Features: There was a decrease in the precision and recall in 

both classes when using higher mode n-grams such as trigrams and four-grams, 

and in encoding characters. This drop is attributed solely on the high dimensionality 

and the sparsity of these features which probably overfit to train data and 

underperformed on unseen data. 

Confusion Matrix Analysis: The confusion matrix for the Random Forest 

model with TF-IDF features demonstrates strong classification accuracy across several 

categories, as evidenced by the prominent diagonal values. These values highlight the 
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model's effective use of TF-IDF to capture term importance, which is essential for 

differentiating between various types of text content. However, the model exhibits a 

tendency to mislabel certain categories as 'Not Bullying', indicating a possible bias 

towards this class. This could be due to class imbalance, where 'Not Bullying' instances 

are more prevalent, leading the model to favour this majority class.  

 

Figure 4.2 Confusion Matrix for Random Forest - TF-IDF  

Figure 4.2 shows the confusion matrix for the Random Forest model using TF-

IDF features, the number of correct and incorrect predictions by categories Religion, 

Age, Ethnicity, Gender, and Not Bullying for Random Forest - TF-IDF. The figure 

demonstrates the model's performance in classifying various cyberbullying types and 

non-bullying instances. The model shows high accuracy in predicting 'Religion', 'Age', 

and 'Ethnicity' categories with very few misclassifications. For 'Religion', there are 1513 

correct predictions and 61 misclassifications as 'Not Bullying'. 'Age' has 1522 correct 

predictions with minor misclassifications. 'Ethnicity' has 1546 correct predictions with 

minimal errors. The 'Gender' category has more misclassifications, with 1374 correct 

predictions and 197 instances misclassified as 'Not Bullying'. The 'Not Bullying' 

category has 1418 correct predictions but includes some misclassifications spread 

across other categories, with the highest confusion being with 'Gender'. 
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The model performs well across most categories, though there is notable 

confusion between 'Gender' and 'Not Bullying' labels, suggesting room for 

improvement in distinguishing these categories. 

Hyperparameter Grid and Cross-validation:  The hyperparameter grid for 

Random Forests (n_estimators, max_depth, min_samples_split, min_samples_leaf) 

significantly influenced model performance. For instance, the best models typically 

used higher numbers of trees (n_estimators around 200-300) and no limit on 

max_depth, which suggests a complex decision boundary. Cross-validation was used to 

ensure the robustness and generalizability of the models, which is crucial in avoiding 

overfitting and underfitting. 

Table 4.4 The Best Hyperparameters for Random Forest by Features 

Features n_estimators Criterion 
Max 

Depth 

Min 

Samples 

Split 

Min 

Samples 

Leaf 

Max 

Features 

tfidf 300 gini None 2 1 sqrt 

bow 300 gini None 5 1 sqrt 

word2vec 300 gini None 2 1 sqrt 

glove 300 gini None 2 1 sqrt 

fasttext 300 gini 30 2 1 sqrt 

hashing 200 gini None 2 1 sqrt 

char_enc 300 gini 30 2 1 sqrt 

unigrams 300 gini None 5 1 sqrt 

bigrams 200 gini None 10 1 sqrt 

trigrams 200 gini None 5 1 sqrt 

fourgrams 200 gini None 2 1 sqrt 

ngrams (1-4) 300 gini None 5 1 sqrt 

ngrams (1-2) 200 gini None 5 1 sqrt 

In the Table 4.4 there are presented the summarizes the best hyperparameters 

for Random Forest models across different feature extraction types. Most feature types, 

such as TF-IDF, BOW, Word2Vec, GloVe, and unigrams, perform best with 300 

estimators, the 'gini' criterion, no maximum depth, minimum samples split of 2, a 

minimum samples leaf of 1, and 'sqrt' for max features. Some exceptions include 

FastText and character encoding, which both have a max depth of 30, and hashing, 
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bigrams, trigrams, and fourgrams, which use 200 estimators. Bigrams and trigrams also 

have higher minimum samples split values of 10 and 5, respectively. This indicates that 

while a general set of hyperparameters works well for most feature types, specific 

adjustments are needed for certain feature extractions to optimize Random Forest 

performance. 

Consistency, for a lot of feature types, the hyperparameters are generally the 

same, which shows that sometimes there exist that settings work very well with different 

text representations. Variations in Depth and Split, Feature types with the specified max 

depth such as fasttext and char_enc evidently imply these representations are best 

obtained with more controlled tree growth. In opposition, other style of dress may not 

limit the depth at all. Balanced Min Samples Split, having a larger min_split of 2 or 3 

for bow, unigrams, bigrams, and ngrams prevents the overfitting issue by making sure 

that there are enough samples for the splits.  

Specific settings, like increasing the number of estimators for 'tfidf' and 'bow' or 

adjusting 'Max Depth' for 'fasttext' and 'char_enc', reflect how feature complexity and 

algorithmic needs vary across different types of data representation.  

 

Figure 4.3 The Number of Trees (n_estimators) 

Figure 4.3 The graph represents the accuracy of the Random Forest - TF-IDF 

classifier changes with the number of trees (n_estimators) in the model. The provided 

complexity curves depict the accuracy scores for training and validation datasets based 
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on the number of trees (n_estimators) in a Random Forest model. The training accuracy 

remains consistently high, close to 1.0, indicating the model's strong capability to fit the 

training data. The validation accuracy starts around 0.93 and shows a slight upward 

trend, stabilizing near 0.94 as the number of trees increases. This suggests that adding 

more trees improves generalization up to a point, after which the gains plateau. The gap 

between training and validation accuracy indicates a well-regularized model with 

minimal overfitting, balancing complexity and performance effectively. 

Learning Curves: Learning curves for high-performing features demonstrated 

good convergence between training and validation scores, indicating well-trained 

models. For features with lower performance, the learning curves often showed a gap 

between training and validation scores, suggesting overfitting. The training accuracy 

starts off high and remains stable, indicating that the model can easily learn from the 

training data. The validation accuracy increases with more training examples, 

narrowing the gap between itself and the training accuracy, which suggests improving 

generalization as the model is trained on more data. Training loss is minimal, 

maintaining near zero throughout different training sizes. The validation loss decreases 

as more data is provided, converging closer to the training loss.  

 

Figure 4.4 The Learning Curve and Loss Curve for Random Forest 

Figure 4.4 presents the learning curves for the Random Forest model using TF-

IDF features display training and validation accuracy and loss as functions of the 

number of training samples. The left plot shows that training accuracy remains high and 

stable, close to 1.0, indicating the model fits the training data well. Validation accuracy 
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steadily increases with more training samples, approaching 0.94, suggesting improved 

generalization. 

The right plot illustrates the corresponding training and validation loss. Training 

loss remains low, reinforcing the model's strong fit to the training data. Validation loss 

decreases as more data is added, indicating that the model benefits from additional data, 

reducing overfitting and improving its performance on unseen data. These trends justify 

the effectiveness of using TF-IDF with Random Forest, highlighting that increasing the 

training dataset size enhances the model's ability to generalize, thus improving overall 

performance. 

4.4.2 Logistic Regression (LR) 

The comprehensive evaluation of the Logistic Regression classifiers trained on different 

features reveals significant insights into model performance, feature effectiveness, and 

the influence of hyperparameters. Table 4.5 Shows comparative performance metrics 

of the Logistic Regression: 

Table 4.5 Comparison Results for the Logistic Regression by Features 

Features Accuracy Precision Recall F1- Measure 

tfidf 0.9241 0.9263 0.9241 0.9247 

bow 0.9279 0.9312 0.9279 0.9286 

word2vec 0.8071 0.8177 0.8071 0.8051 

glove 0.8620 0.8610 0.8620 0.8613 

fasttext 0.9002 0.9016 0.9002 0.9004 

hashing 0.8764 0.8807 0.8764 0.8777 

char_enc 0.3835 0.3767 0.3835 0.3716 

unigrams 0.9279 0.9312 0.9279 0.9286 

bigrams 0.7455 0.8331 0.7455 0.7591 

trigrams 0.4555 0.8184 0.4555 0.4501 

fourgrams 0.3056 0.8447 0.3056 0.2490 

n-grams (1-4) 0.9263 0.9303 0.9263 0.9271 

n-grams (1-2) 0.9260 0.9300 0.9260 0.9269 
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Table 4.5 provides a comparison of logistic regression performance across 

various feature extraction methods. The BoW and unigrams achieved the highest 

accuracy (0.9279) and F1-score (0.9286). TF-IDF and n-grams (1-4) also performed 

well with accuracy around 0.9260-0.9263. Word2Vec and GloVe showed moderate 

performance with accuracy of 0.8071 and 0.8620 respectively, while FastText had a 

slightly higher accuracy of 0.9002. The Hashing method achieved a respectable 

accuracy of 0.8764. However, character encoding and higher-order n-grams (trigrams, 

fourgrams) showed significantly lower performance, with accuracies ranging from 

0.3056 to 0.4555. This analysis highlights that simpler features like BoW and unigrams 

are highly effective for this task, while complex methods like character encoding and 

higher-order n-grams are less suitable for logistic regression in this context. Figure 4.5 

summarized in Table 4.4 displays the highlights the effectiveness of the Logistic 

Regression algorithm's feature combinations: 

 

Figure 4.5 Comparison Logistic Regression Performance by Features 

Figure 4.5 present the performance metrics of the Logistic Regression (LR) 

including accuracy, precision, recall, and F1-score. TF-IDF and BOW/unigrams show 

the highest performance across all metrics, with TF-IDF leading slightly (accuracy: 
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92.41%, precision: 92.63%, recall: 92.41%, F1-score: 92.47%). FastText and hashing 

also perform well, particularly in precision and F1-score. 

Conversely, character encoding (char_enc) and higher-order n-grams (trigrams 

and fourgrams) exhibit poor performance, with fourgrams having the lowest accuracy 

(30.56%) and F1-score (24.90%). This suggests that simpler feature extraction methods 

like TF-IDF and BOW/unigrams are more effective for LR models, as they balance 

dimensionality and feature informativeness without overwhelming the model. Complex 

methods such as character encoding and higher-order n-grams may introduce noise and 

high dimensionality, leading to decreased model performance. This analysis 

underscores the efficiency of straightforward feature extraction techniques for LR in 

text classification tasks. 

The analysis of various text feature extraction techniques using logistic 

regression reveals notable differences in performance metrics across different methods. 

Among these, the 'bow' (Bag of Words) and 'ngrams' (including unigrams) models 

exhibited the highest performance. Here's an in-depth look into why these variations 

occur: 

1. High-Performance Features: TF-IDF, BOW, Unigrams, Ngrams(1-4), Ngrams(1-

2) These features generally provided high accuracy, precision, recall, and F1-score 

across evaluations. Their effectiveness can be attributed to the comprehensive 

representation of text data they provide, capturing both the frequency and the context 

of words in documents. The application of n-gram models up to trigrams helps in 

preserving sequential information, which is crucial for understanding the semantic 

structure of texts. 

2. Moderate-Performance Features: Word2Vec, GloVe, FastText These embeddings 

capture semantic meanings and have shown moderate performance. Their 

performance depends heavily on the dataset's alignment with the training corpus of 

the embeddings. For instance, embeddings trained on generic sources may not 

perform as well on domain-specific tasks without fine-tuning. 
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